Scholarly Horizons: University of Minnesota, Morris Undergraduate Journal


Aircraft contrail emission is widely believed to be a contributing factor to global climate change. We have used machine learning techniques on images containing contrails in hopes of being able to identify those which contain contrails and those that do not. The developed algorithm processes data on contrail characteristics as captured by long-term image records. Images collected by the United States Department of Energy’s Atmospheric Radiation Management user facility(ARM) were used to train a deep convolutional neural network for the purpose of this contrail classification. The neural network model was trained with 1600 images taken by the Total Sky Imager(TSI) from March 2017 and achieved an accuracy of 97.5% on the training set of images and an accuracy of 98.5% on the validation set.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.