Scholarly Horizons: University of Minnesota, Morris Undergraduate Journal

Article Title

Aviation Data Mining


We explore different methods of data mining in the field of aviation and their effectiveness. The field of aviation is always searching for new ways to improve safety. However, due to the large amounts of aviation data collected daily, parsing through it all by hand would be impossible. Because of this, problems are often found by investigating accidents. With the relatively new field of data mining we are able to parse through an otherwise unmanageable amount of data to find patterns and anomalies that indicate potential incidents before they happen. The data mining methods outlined in this paper include Multiple Kernel Learning algorithms, Hidden Markov Models, Hidden Semi-Markov Models, and Natural Language Processing.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.