•  
  •  
 

Document Type

Article

Abstract

One of the main difficulties faced in most generative machine learning models is how much data is required to train it, especially when collecting a large dataset is not feasible. Recently there have been breakthroughs in tackling this issue in SinGAN, with its researchers being able to train a Generative Adversarial Network (GAN) on just a single image with a model that can perform many novel tasks, such as image harmonization. ConSinGAN is a model that builds upon this work by concurrently training several stages in a sequential multi-stage manner while retaining the ability to perform those novel tasks.

Primo Type

Article

Share

COinS