Document Type
Article
Publication Date
2020
Publication Title
Irish Communication Review
Abstract
Widespread use of Artificial Intelligence in all areas of today’s society creates a unique problem: algorithms used in decision-making are generally not understandable to those without a background in data science. Thus, those who use out-of-the-box Machine Learning (ML) approaches in their work and those affected by these approaches are often not in a position to analyse their outcomes and applicability. Our paper describes and evaluates our undergraduate course at the University of Minnesota Morris, which fosters understanding of the main ideas behind ML. With Communication, Media & Rhetoric and Computer Science faculty expertise, students from a variety of majors, most with no prior background in data science or computing, reviewed the scope of applicability of algorithms and became aware of possible biases, ‘politics’ and pitfalls. After discussing articles on societal attitudes towards technology, explaining key concepts behind ML algorithms (training and dependence on data), and constructing a decision tree as an example of an algorithm, we attempted to develop guidelines for ‘best practices’ for use of algorithms. Students presented a ‘case analysis’ capstone paper on an application of machine learning in society. Paper topics included: use of algorithms by child protection services, ‘deepfake’ videos, genetic testing. The level of papers was indicative of students’ strong interest in the subject and their ability to understand key terms and ideas behind algorithms, societal perception and misconceptions of use of algorithms, and their ability to identify good and problematic practices in use of algorithms.
Volume
17
Issue
1
First Page
1
Last Page
19
ISSN
0791-0010
Rights
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License
Recommended Citation
Burke, Barbara R. and Machkasova, Elena (2020) "Critical Media, Information, and Digital Literacy: Increasing Understanding of Machine Learning Through an Interdisciplinary Undergraduate Course," Irish Communication Review: Vol. 17: Iss. 1, Article 1. Available at: https://arrow.tudublin.ie/icr/vol17/iss1/1
Primo Type
Article
Comments
This article is also freely available from the publisher at https://arrow.tudublin.ie/icr/vol17/iss1/1