Document Type
Article
Publication Date
2-1-2019
Publication Title
G3: Genes, Genomes, Genetics
Abstract
The skin secretions of many frogs have genetically-encoded, endogenous antimicrobial peptides (AMPs). Other species, especially aposematic poison frogs, secrete exogenously derived alkaloids that serve as potent defense molecules. The origins of these defense systems are not clear, but a novel bileacid derived metabolite, tauromantellic acid, was recently discovered and shown to be endogenous in poison frogs (Mantella, Dendrobates, and Epipedobates). These observations raise questions about the evolutionary history of AMP genetic elements, the mechanism and function of tauromatellic acid production, and links between these systems. To understand the diversity and expression of AMPs among frogs, we assembled skin transcriptomes of 13 species across the anuran phylogeny. Our analyses revealed a diversity of AMPs and AMP expression levels across the phylogenetic history of frogs, but no observations of AMPs in Mantella. We examined genes expressed in the bile-acid metabolic pathway and found that CYP7A1 (Cytochrome P450), BAAT (bile acid-CoA: amino acid N-acyltransferase), and AMACR (alphamethylacyl- CoA racemase) were highly expressed in the skin of M. betsileo and either lowly expressed or absent in other frog species. In particular, CYP7A1 catalyzes the first reaction in the cholesterol catabolic pathway and is the rate-limiting step in regulation of bile acid synthesis, suggesting unique activation of the bile acid pathway in Mantella skin. The activation of the bile acid pathway in the skin of Mantella and the lack of observed AMPs fuel new questions about the evolution of defense compounds and the ectopic expression of the bile-acid pathway.
Volume
9
Issue
2
First Page
581
Last Page
589
DOI
https://doi.org/10.1534/g3.118.200880
ISSN
2160-1836
Rights
Copyright © 2019 Civitello et al.
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Recommended Citation
Civitello, M.L. R.D. Denton, M.A. Zasloff, and J.H. Malone. 2019. Activation of the Bile Acid Pathway and No Observed Antimicrobial Peptide Sequences in the Skin of a Poison Frog. G3: GENES, GENOMES, GENETICS 9(2): 581-589. https://doi.org/10.1534/g3.118.200880
Primo Type
Article
Comments
This publication originally published in G3: Genes, Genomes, Genetics. The article is available open access on the publisher's website.