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LETTER Communicated by Richard Hahnloser

Permitted Sets and Convex Coding in Nonthreshold
Linear Networks

Steven Collazos
colla054@umn.edu
Science and Math Division, University of Minnesota Morris, Morris,
MN 56267, U.S.A.

Duane Nykamp
nykamp@umn.edu
School of Mathematics, University of Minnesota, Minneapolis, MN 55455, U.S.A.

Hebbian theory proposes that ensembles of neurons form a basis for neu-
ral processing. It is possible to gain insight into the activity patterns of
these neural ensembles through a binary analysis, regarding neurons as
either active or inactive. The framework of permitted and forbidden sets,
introduced by Hahnloser, Seung, and Slotine (2003), is a mathematical
model of such a binary analysis: groups of coactive neurons can be per-
mitted or forbidden depending on the network’s structure.

In order to widen the applicability of the framework of permitted sets,
we extend the permitted set analysis from the original threshold-linear
regime. Specifically, we generalize permitted sets to firing rate models in
which � is a nonnegative continuous piecewise C1 activation function. In
our framework, the focus is shifted from a neuron’s firing rate to its re-
sponsiveness to inputs; if a neuron’s firing rate is sufficiently sensitive to
changes in its input, we say that the neuron is responsive. The algorithm
for categorizing a neuron as responsive depends on thresholds that a user
can select arbitrarily and that are independent of the dynamics.

Given a synaptic weight matrix W , we say that a set of neurons is per-
mitted if it is possible to find a stimulus where those neurons, and no
others, remain responsive. The main coding property we establish about
P�(W ), the collection of all permitted sets of the network, is that P�(W )
is a convex code when W is almost rank one. This means that P�(W ) in
the low-rank regime can be realized as a neural code resulting from the
pattern of overlaps of receptive fields that are convex.

1 Introduction

A central unsolved question in neuroscience is how neural activity and
network connectivity influence each other. As a result, groups of coactive
neurons are phenomena of interest in neuroscience (Hebb, 2005; Harris,
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2005; Thompson & Scott, 2016; Wilson & McNaughton, 1994). A frame-
work in which the activity patterns of coactive neurons—and how they are
shaped by the network’s structure—can be analyzed is the firing rate model
known as threshold-linear network (TLN). The neurons’ response to over-
all synaptic input in a TLN is given by a rectifier, �(x) = max(x, 0), where
x ∈ R.

In previous work, Hahnloser et al. (Hahnloser, Sarpeshkar, Mahowald,
Douglas, & Seung, 2000; Hahnloser, Seung, & Slotine, 2003) introduced
TLNs with symmetric weight matrices and studied their fixed points. In
their framework, the input is a stimulus and the output is a collection of
neurons that can become stably coactive, called a permitted set of the net-
work. (Here “stably coactive” refers to an asymptotically stable fixed point
of the dynamics whose nonzero coordinates correspond to the coactive neu-
rons.) Similarly, there are groups of neurons that cannot be stably coactive
regardless of the choice of stimulus; such a group of neurons is called a
forbidden set. Thus, their framework combines the interplay between dig-
ital and analog coding in neurons. On the other hand, since a pattern of
active and silent neurons in a population can be identified with a binary
list of neuron indices, the set of all such activity patterns can be considered
a combinatorial neural code (Osborne, Palmer, Lisberger, & Bialek, 2008).
Therefore, the collection of permitted sets of a network is a combinatorial
neural code (Curto, Degeratu, & Itskov, 2013). It turns out that permitted
sets for TLNs can also be considered when the synaptic weight matrix is
not symmetric (Curto, Degeratu, & Itskov, 2012).

The main goal of this letter is to generalize the notion of permitted and
forbidden sets to networks with activation functions � that can be any
nonnegative continuous piecewise C1 function. (A function � is C1 when
� is differentiable and its derivative is a continuous function.) A key step
for this generalization is recasting the definition of these sets to be based on
the concept of a neuron being responsive to input rather than active. In the
TLN framework, the active neurons that define permitted sets are neurons
with a positive firing rate. In our generalization, the responsive neurons
that define permitted sets are neurons whose gain, or derivative of �, is
sufficiently high. In the case of TLNs, the gain is binary, either 0 or 1, and
the gain of 1 corresponds exactly to the original definition of active neurons
with a positive firing rate. In general, the gain can vary continuously with
input, so to categorize responsive neurons, we introduce a threshold gain
that can be chosen arbitrarily.

Unlike TLN networks, the threshold for responsive neurons is strictly
a tool to transform neuronal activity to a combinatorial code for analysis.
The threshold does not have an impact on the dynamics: both unresponsive
and responsive neurons can have graded effects on a postsynaptic neuron.
Nonetheless, the gain itself is a natural quantity to characterize network
dynamics, such as stability, or the encoding properties, such as in the score
function used to define Fisher information.
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By establishing thresholds to categorize neurons into responsive and un-
responsive sets, we create the combinatorial neural code of permitted sets
based on patterns of coresponsive neurons. We prove results regarding pat-
terns of coresponsive neurons that can be supported by networks with low-
rank synaptic weight matrix, paving a way for further binary analysis of
activity patterns of firing rate models.

This letter is organized into six sections. In section 2, we give an overview
of threshold-linear networks. In section 3, we introduce our definition of
permitted set for a firing network model in the general setting. We also
show related results and an example of a network where we find its permit-
ted sets. In section 4, we prove that if the network’s synaptic weight matrix
is close to being rank one; then the collection of permitted sets forms a con-
vex code. In section 5, we discuss our results. Finally, we present proofs of
several results in the appendix.

2 Firing-Rate Network Models

One way of modeling the dynamics of recurrent neural networks is via
firing-rate models, where the network consists of neuron-like units whose
outputs are firing rates. Two advantages of firing-rate models are that they
avoid the short-timescale dynamics required to simulate action potentials,
and they allow us to perform analytic calculations of some aspects of net-
work dynamics (Dayan & Abbott, 2001).

A threshold-linear network (Hahnloser, Seung, & Slotine, 2003) is a neural
network model where the dynamics of each neuron is given by

τ ẋi + xi =
⎡⎣ N∑

j=1

wi jx j + bi

⎤⎦
+

,

where we use the following notation:

[·]+: Rectification nonlinearity, [x]+ = max(x, 0), where x ∈ R

xi(t): Firing rate of neuron i at time t
bi: Input current to neuron i

τ > 0: Neuron’s timescale
wi j: Effective strength of the synapse of neuron j onto neuron i

In general, a firing-rate model of N neurons has the form

τ ẋi + xi = �

⎛⎝ N∑
j=1

wi jx j + bi

⎞⎠,
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where �, the activation function, describes the steady-state firing rate of the
neurons as a function of the total synaptic input.

The systems of N differential equations we discuss in this section
can be expressed more compactly in terms of the firing-rate vector x =
(x1, x2, . . . , xN ) as

Dẋ + x = [Wx + b]+ (2.1)

in the TLN regime and as

Dẋ + x = � (Wx + b) (2.2)

in general. Here W is an N × N synaptic weight matrix; D = diag(τ, τ,
. . . , τ ) is an N × N diagonal matrix of time constants; and b ∈ R

N is in-
terpreted as an external stimulus to the network. Furthermore, �(x) de-
notes (�(x1),�(x2), . . . , �(xN )). Throughout this letter, � is nonnegative
continuous piecewise C1, that is, continuous everywhere and differentiable
everywhere except possibly at finitely many points. Finally, �′(s) → 0 as
s → −∞.

3 Permitted and Forbidden Sets

A permitted set is a set of neurons that can be made stably coresponsive
(where, implicitly, we mean all neurons outside the set are unresponsive).
In general, if a neuronal network is weakly coupled, then external input can
drive any activity pattern and any set of neurons can be made stably co-
responsive with a suitable stimulus. In this case, the set of permitted sets
is trivial: it consists of all subsets of neurons. Of more interest is the case
where the feedback of synaptic connections is strong enough to amplify
perturbations and destabilize certain activity patterns. If the network feed-
back prevents a set of neurons from being stably coresponsive, no matter
the external input, then that set corresponds to a forbidden set. The activity
might stabilize to a different pattern of coresponsive neurons, as the gains
on some neurons change. The resulting stably coresponsive set would cor-
respond to a permitted set.

3.1 Effective Gain Matrix. We need a few preliminary results before
formalizing the concept of a permitted set when the network is not a TLN.
Here, we state a lemma showing we can create any steady-state activity
pattern and introduce the concept of the effective gain of the network.

Lemma 1. Let W be an N × N synaptic weight matrix, D an N × N diagonal ma-
trix of time constants, and � be an activation function (which need not be differen-
tiable). Let x∗ = (�(I1), . . . , �(IN )) be given, where Ik ∈ R. Then there is b ∈ R

N

such that x∗ is a fixed point of Dẋ + x = �(Wx + b).

Proof. See the appendix. �
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Lemma 1 states that provided we have freedom over how to stimulate
a neuronal network, we can create a steady state for any pattern of activity
across the network. Since the lemma does not say anything about the sta-
bility of the steady states, it does not distinguish between activity patterns
that could correspond to permitted or forbidden sets. As a first step toward
addressing stability, we define a quantity that will play a fundamental role
in our stability calculations.

Definition 1 (Effective gain of a network). For a neuronal network modeled by
equation 2.2, we define the effective gain of the network at x to be

�(x) =

⎛⎜⎜⎜⎜⎜⎝
�′(W (1) · x + b1) 0 · · · 0

0
. . . · · · 0

...
...

. . .
...

0 0 · · · �′(W (N) · x + bN )

⎞⎟⎟⎟⎟⎟⎠, (3.1)

where W (k) denotes the kth row of W.

The effective gain �(x) captures the influence of the network on the re-
sponsiveness of each neuron. Given some stimulus b in R

N, let x∗ be a fixed
point of equation 2.2, which we can rewrite as

ẋ = D−1 (�(Wx + b) − x) .

The stability of the fixed point x∗ is determined by the Jacobian matrix of
the right-hand side. However, since we assume all time constants are the
same, the matrix D−1 is proportional to the identity and simply rescales the
eigenvalues of the Jacobian matrix. Hence, the stability depends only on
the Jacobian matrix of �(Wx + b) − x at x∗, which is �(x∗)W − I. In terms
of neurobiology, �(x∗)W is the effective recurrence matrix.

3.2 Permitted, Marginally Permitted, and Forbidden Sets. To our
knowledge, there is no definition of permitted sets for firing-rate models
outside of TLNs. One main issue in the generalization is that the gain is no
longer binary as in the TLN regime. We can recover the binary distinction
for our analysis by dichotomizing using a gain threshold. For additional
flexibility, we introduce two thresholds: roff and ron, with 0 ≤ roff ≤ ron. We
regard a neuron with gain at or below roff as unresponsive; we regard a neu-
ron with gain above ron as responsive. Auser can optionally choose ron > roff
to create stricter definitions of forbidden and permitted sets that exclude
neurons with intermediate gains. Alternatively, one could set ron = roff so
that all neurons can be classified as responsive or unresponsive. These
thresholds allow analysis of the network activity in terms of combinatorial
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codes even when the dynamics are governed by a � that is continuous
piecewise C1 with a slope that spans a continuum.

The two thresholds introduce three possible categorizations of a neu-
ron’s activity. The magnitude of the gain of neuron i is the absolute value of
the derivative, that is, |�′(W (i) · x + bi)|, where W (i) denotes the ith column
of W . We categorize neuron i as unresponsive, marginally responsive, or re-
sponsive by comparing the magnitude of the gain with the gain thresholds.
(Note that the category marginally responsive is possible only if ron > roff.)

Definition 2 (Unresponsive and responsive neurons). Let x∗ be a vector of
firing rates of a network with N neurons. Suppose that equation 2.2 describes the
network’s dynamics. Let �′

i denote �′ (W (i) · x + bi
)
. A neuron i is unresponsive

when |�′
i| ≤ roff and responsive when |�′

i| > ron. Additionally, we say that i is
marginally responsive if roff < |�′

i| ≤ ron.

We next define the concept of coresponsive neurons as a set of neurons
that are responsive with all other neurons being unresponsive. (We insist
that no neurons are marginally responsive in order to use the coresponsive
designation.)

Definition 3 (Coresponsive neurons). We say that a nonempty subset σ ⊆
{1, 2, . . . , N} of neurons is coresponsive when |�′

i| > ron for all i ∈ σ and |�′
j| ≤

roff for all j /∈ σ .

Equipped with a way of classifying groups of neurons based on whether
they are responsive, marginally responsive, or uresponsive, we now intro-
duce a combinatorial neural code for networks whose dynamics are de-
scribed by equation 2.2. The combinatorial code is determined by the stable
patterns of neurons that can be elicited by any stimulus b. If a set of neu-
rons σ can be made stably coresponsive by some stimulus, σ is a permit-
ted set. For the case with ron > roff, we can also have marginally permitted
sets by allowing some neurons in σ to be only marginally responsive. A
forbidden set σ is a set of neurons that cannot be made stably coresponsive
(even if we allow marginally responsive neurons) no matter the value of the
stimulus b.

Definition 4 (Permitted and forbidden sets). Suppose the network’s dynamics
are described by equation 2.2. Let 0 ≤ roff ≤ ron be constants such that there is soff ∈
R for which |�′(s)| ≤ roff for all s ≤ soff. When σ is a subset of {1, 2, . . . , N}, then:

1. We call σ a permitted set if there exists a b in R
N such that there is

an asymptotically stable fixed point x∗ = (�(I1), . . . , �(IN )) for which the
neurons in σ are coresponsive.

2. We call σ a marginally permitted set if σ is not permitted and there
exists a b in R

N such that there is an asymptotically stable fixed point
x∗ = (�(I1), . . . , �(IN )) for which the neurons in σ are marginally respon-
sive or responsive, whereas neurons that are not in σ are unresponsive.
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3. If σ is neither permitted nor marginally permitted, then we call it a forbid-
den set.

We denote the network’s collection of all permitted sets by P�(W ). (Note that
P�(W ) depends on roff and ron.)

Note that definition 4 ensures that neurons become unresponsive for
sufficiently small input, which is also the input range where neurons can
be given an arbitrary low gain. (Recall that lim

s→−∞ �′(s) = 0.) An important

consequence is that the empty set is permitted. By giving each neuron a suf-
ficiently negative input, one can obtain an asymptotically stable fixed point
supporting a group of neurons that are all unresponsive.

3.3 Permitted Sets in a Rank-One Network. The next useful lemma
gives a formula for the one eigenvalue we will usually be concerned with
when dealing with rank-one W synaptic weight matrices. Recall that rank-
one matrices satisfy the property that W = uvT , where u and v are nonzero
and vT denotes the transpose of v . Further, the eigenvalues of W are tr(W )
and 0, where tr(W ) denotes the trace of W (Horn & Johnson, 2012).

Lemma 2. Suppose that the network’s dynamics are described by equation
2.2. Further suppose that W = uvT , where u, v ∈ R

N are nonzero. Let x∗ =
(�(I1),�(I2), . . . , �(IN )). Then x∗ is an asymptotically stable fixed point if and
only if there is some I∗ = (I∗1 , I∗2 , . . . , I∗N ) in �−1(x∗

1 ) × �−1(x∗
2 ) × · · · × �−1(x∗

N )
such that

tr(�(x∗)W ) =
N∑

i=1

uivi �
′(I∗i ) < 1.

(Here �−1(x∗
1 ) × �−1(x∗

2 ) × · · · × �−1(x∗
N ) denotes the Cartesian product of the

sets �−1(x∗
1 ),�−1(x∗

2 ), . . . , and �−1(x∗
N ). In general, �−1(x∗

i ) is the preimage of
x∗

i , so it is a set of values.)

Proof. See the appendix. �

Next, we show a simple example of finding a network’s permitted and
forbidden sets. Recall that following definition 4, sets of neurons σ are sub-
sets of {1, 2, . . . , N}, so numbers in the set {1, 2, . . . , N} stand for neurons’
indices.

Example 1. Let W be the synaptic weight matrix

W = uvT =
⎛⎝ 1√

2

1√
2

⎞⎠( 1√
2

1√
2

)
.
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Suppose D is the 2 × 2 identity matrix and �(x) = exp(x). Then equation
2.2 will take the form

ẋi + xi = exp
(

bi + 1
2

x1 + 1
2

x2

)
,

where i can be 1 or 2. (Here τ = 1.)

Next, we pick gain thresholds: let roff = 1
4

and ron = 3
2

.

When W is rank one, |||W |||2 = ||u||2 ||v||2, where || · ||2 denotes the Eu-
clidean norm. Hence, ||W ||2 = 1 because ||u||2 = ||v||2 = 1. In particular,
1/|||W |||2 = 1. Now let us find the permitted sets of the network.

First, we claim that {1, 2} is not a permitted set, which means that neu-
rons 1 and 2 cannot be stably coresponsive: let b ∈ R

2 be such that x∗ =
(exp(I1), exp(I2)) is a fixed point of the dynamics for which |�′(I1)| = eI1 >

ron and |�′(I2)| = eI2 > ron. Since � is monotonic, I1 and I2 are the only net
inputs possible in lemma 2. We calculate

2∑
k=1

ukvk�
′(Ik) = 1

2
eI∗1 + 1

2
eI∗2 >

1
2

ron + 1
2

ron = 3
2

> 1.

By lemma 2, the fixed point is not asymptotically stable and {1, 2} is not
permitted.

On the other hand, {1} and {2} are permitted; it suffices to show that {1} is
a permitted set (since the argument for {2} will be identical in this example).

Let

b1 = log
(

5
3

)
−
(

1
2

elog(5/3) + 1
2

elog(1/5)
)

and

b2 = log
(

1
5

)
−
(

1
2

elog(5/3) + 1
2

elog(1/5)
)

.

Observe that x∗ = (elog(5/3), elog(1/5) ) = (5/3, 1/5) is a fixed point of the
dynamics. Further, �′(log(5/3)) = 5/3 > ron and �′(log(1/5)) = 1/5 < roff.
Now apply lemma 2 to verify that x∗ is indeed asymptotically stable:

2∑
k=1

ukvk�
′(I∗k ) = 1

2
elog(5/3) + 1

2
elog(1/5)

= 5
6

+ 1
10

< 1.

Therefore, {1} is permitted.
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3.4 Relationship between Weakly Coupled Networks and Respon-
siveness Thresholds. The framework we introduce allows one to freely
choose responsiveness thresholds ron and roff. Although the results we
present are valid for any such values (aside from the technical restriction
involving soff in definition 4), the results are not interesting if one chooses
ron so small that neurons can become responsive without affecting the sta-
bility of fixed points. For such a small ron, all sets would be permitted. We
show that the threshold for interesting behavior varies inversely with cou-
pling strength so that weakly coupled networks would require a large ron

to allow for the possibility of forbidden sets.
Before presenting the result, recall that (Horn & Johnson, 2012) when

|| · || is a norm on a vector space, the matrix norm induced by || · || of an
N × N matrix A is defined by

|||A||| = max
||x||=1

||Ax||.

Later in this letter || · || will be the usual Euclidean norm on R
N. We also

remind readers that (Horn & Johnson, 2012) the spectral radius ρ(A) of A is
defined as the largest absolute value of the eigenvalues of A:

ρ(A) = max(|λ1|, |λ2|, . . . , |λN|),

where λ1, . . . , λN are the eigenvalues of A. It turns out that ρ(A) ≤ |||A|||.
Finally, recall that the matrix norm is submultiplicative (Horn & Johnson,
2012):

|||AB||| ≤ |||A||| |||B|||

for any N × N matrices A and B.

Proposition 1. Suppose that the network’s dynamics are described by equation
2.2. Let 0 ≤ roff ≤ ron be constants such that there is soff ∈ R for which |�′(s)| ≤ roff

for all s ≤ soff. Suppose that

ron <
1

|||W |||

and that there is J ∈ R such that ron < |�′(J)| < 1/|||W |||.
Then any subset of {1, 2, . . . , N} is a permitted set, that is, for any subset σ of

{1, 2, . . . , N}, there is b ∈ R
N so that Dẋ + x = �(Wx + b) has an asymptotically

stable fixed point x∗ = (�(I1),�(I2), . . . , �(IN )) satisfying

|�′(Ii)| > ron for all i ∈ σ and |�′(I j )| ≤ roff for all j /∈ σ.
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Proof. Let J ∈ R be such that 1/|||W ||| > |�′(J)| > ron. Continuity of �′ at
J implies that there is an open interval Non ⊂ R containing J such that for
all x ∈ Non, we have ron < |�′(x)| < 1/|||W |||. Furthermore, |�′(x)| ≤ roff for
all x ∈ Noff for some open interval Noff ⊂ R because �′(s) → 0 as s → −∞,
|�′(s)| ≤ roff for all s ≤ soff, and �′ is continuous except possibly at finitely
many values. Let x∗ be such that for all i ∈ σ , we have x∗

i = �(Ii), where
Ii ∈ Non, while for all j /∈ σ , we have x∗

j = �(I j ), where I j ∈ Noff.
Next, observe that if i ∈ σ , then �−1(x∗

i ) ∩ Non �= ∅ because Ii ∈ �−1(x∗
i ).

Similarly, �−1(x∗
j ) ∩ Noff �= ∅. Hence, by lemma 1, if b = L∗ − Wx∗, where

L∗
i ∈ �−1(x∗

i ) ∩ Non for all i ∈ σ and L∗
j ∈ �−1(x∗

j ) ∩ Noff for all j /∈ σ , then x∗

is a fixed point.
To prove that x∗ is in fact an asymptotically stable fixed point, we show

that the eigenvalues of JF(x∗) = �(x∗)W − I have negative real part. Since
�(x∗) is a diagonal matrix whose entries are strictly bounded by 1/|||W |||,
we get |||�(x∗)||| < 1/|||W |||. Then by the submultiplicativity property of
matrix norms, we observe

|||�(x∗)W ||| ≤ |||�(x∗)||| |||W |||

<
1

|||W ||| |||W |||

= 1.

Therefore, ρ(�(x∗)W ) < 1 because ρ(�(x∗)W ) ≤ |||�(x∗)W |||, which im-
plies that the eigenvalues of �(x∗)W − I are negative. Hence, x∗ is asymp-
totically stable. �

Roughly speaking, proposition 1 shows that given a suitable activation
function, one should be careful not to select a responsiveness threshold that
is too small. Otherwise, every coresponsive group of neurons will be a code-
word in our neural code (i.e., the collection of permitted sets). The resulting
trivial combinatorial neural code would be uninteresting. The framework
of permitted sets can provide insight into network behavior when some
groups of neurons can be made coresponsive given a suitable stimulus,
whereas there are other groups that cannot be made stably coresponsive
regardless of the stimulus that is applied to them.

4 Convex Coding and Rank-One Networks

In the previous section, we introduced permitted sets P�(W ) of networks
whose dynamics are described by Dẋ + x = �(Wx + b). We said that P�(W )
is the collection of all groups of neurons that can be made stably corespon-
sive by a stimulus. If we think of P�(W ) as a combinatorial neural code, it
is natural to inquire about the properties of such a code. Recall that a code-
word in a combinatorial neural code is a pattern of neural activity where
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neurons are either responsive or unresponsive. Equivalently, codewords in
a combinatorial neural code are subsets of {1, 2, . . . , N}; for example, any
neuron in an ensemble σ ⊆ {1, 2, . . . , N} is responsive and neurons that are
not in σ are unresponsive.

4.1 Convex Codes. One property of combinatorial neural codes is con-
vexity. Recall that a set C of Rd is convex: any two points in C can be con-
nected by a straight line contained entirely within C. The notion of a convex
code is based on endowing each neuron with a receptive field in a stimu-
lus space: an activation pattern across all neurons is created by choosing a
stimulus s, which is a point in R

d, and for a given s, a neuron is active if s is
in its receptive field and silent s is outside its receptive field. (As a reminder,
we use the term active in the usual sense, i.e., to say that a neuron’s mag-
nitude of firing is large enough.) The set of all possible activation patterns
generated by all stimuli is the receptive field code.

We next consider an example of a convex code.

Example 2. The code

C1 = {∅, {1}, {4}, {1, 2}, {1, 3}, {1, 2, 3}}

is an open convex code, a combinatorial neural code that is generated by
the pattern of intersections of a collection of open and convex subsets in
some R

d. One can demonstrate this by using a one-dimensional stimuli
space consisting of four open intervals corresponding to the four neurons
whose overlaps generate C1. For this example, the stimuli space is R, and
consider the receptive fields

U1 = (−1, 5),

U2 = (0, 3),

U3 = (2, 5),

U4 = (6, 7).

Here each Uk is an open interval denoting neuron k’s receptive field. To il-
lustrate why S = {U1,U2,U3,U4} generates C1, we select some stimuli and
groups of neurons and then discuss whether the group of neurons can be a
codeword:

• If s = 1, then s falls in the receptive fields of neurons 1 and 2. As a
result, {1, 2} is a codeword in the receptive field code determined by
the four neurons in this example.

• If s = 5.5, then s is not in the receptive fields of any of the four neu-
rons. Hence, ∅ is a codeword because none of the neurons become
responsive when s is presented.
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• The set of neurons {2, 3} does not appear as an activation pattern, so
{2, 3} is not a codeword. If s is a stimulus presented to neurons 2 and
3 that falls in their receptive fields, then s must necessarily fall in the
receptive field of neuron 1 as U2 ∩ U3 ⊆ U1.

The combinatorial neural code in example 2 is an instance of an open con-
vex code. The dimension d of the stimulus space corresponds to the number
of parameters needed to describe the stimulus; for example, a simple neu-
ron in the primary visual cortex tuned to the orientation of edges in two
dimensions would have d = 1 because orientation can be parameterized by
an angle.

To make the definition of a receptive field (RF) code precise, we define
the RF code generated by S = {U1,U2, . . . ,UN}, which is a collection of open
subsets of Rd, as (Curto et al., 2017):

C(S ) =
⎧⎨⎩σ ⊆ {1, 2, . . . , N} :

⋂
i∈σ

Ui\
⋃
j/∈σ

Uj �= ∅
⎫⎬⎭.

(Here the symbol “\” is set subtraction; for example, {2, 3, 5, 9}\{1, 2, 5} =
{3, 9}.) If, in addition, every open subset in S is convex, then C(S ) is referred
to as a convex RF code. From this point of view, then, codewords correspond
to ensembles of neurons σ that can be coactivated when a suitable stimulus
falls in a part of the stimulus space that is covered by the receptive fields of
the neurons in σ .

Example 3. For a concrete example of a nonconvex RF code,

C2 = {∅, {1}, {2}, {3}, {4}, {2, 3}, {2, 4}, {1, 2, 3}, {1, 2, 4}}

is a combinatorial code that is not convex (due to Vladimir Itskov, personal
communication). We provide an (uninstructive) argument in the appendix
that shows that the receptive field of either neuron 1 or neuron 2 (i.e., U1 or
U2) must be nonconvex.

There is a similar notion (Cruz, Giusti, Itskov, & Kronholm, 2019) involv-
ing closed subsets of RN. Observe that if S is a collection of receptive fields,
then C(S ) is a combinatorial neural code.

Although the above notion of an RF code was based on the usual sense
of a neuron being active, we reformulate the code back in terms of a neu-
ron being responsive so that we can investigate arbitrary activation func-
tions �. We will regard a neuron as responsive when a stimulus falls within
that neuron’s receptive field, which will allow us to explore the question
of how neural activity is shaped by the network structure. We investigate
whether the collection of permitted sets generated by the network W , that
is, P�(W ), could be realized as an (open) convex RF code. In other words,
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given P�(W ), we would like to know if P�(W ) could be the result of the
pattern of overlaps among the neurons’ convex receptive fields.

4.2 Permitted Sets of Low-Rank Networks Form a Convex Code. We
investigate conditions of the network connectivities W under which the col-
lection of permitted sets P�(W ) form a convex code. Given a network with
dynamics described by equation 2.2, our goal is to uncover links between
the network structure and the structure of receptive fields observed in
response to a stimulus. Convex neural codes are of particular interest as
receptive fields tend to be convex. Our main result in this letter, theorem 1,
which is at the end of this section, is that if W is rank one and P is a suitable
perturbation, then P�(W + P) is a convex code.

Our route for obtaining convex codes is through maximal-intersection
complete codes. A combinatorial code is maximal-intersection complete if
intersections of maximal codewords are also codewords (Curto et al., 2017),
where a maximal codeword is one that is not a proper subset of any other
codeword. Since Cruz et al. (2019) proved that maximal-intersection com-
plete codes are open and closed convex, our goal is to show conditions un-
der which a permitted set code is maximal-intersection complete.

We first prove in proposition 2 that the collection of permitted sets
is maximal-intersection complete (and therefore convex) if the synaptic
weight matrix is rank one. We then generalize this result in theorem 1 to
matrices that are close to rank one. For the remainder of the letter, we de-
note the set {1, 2, . . . , N} by [N].

4.2.1 Rank-One Synaptic Weight Matrices.

Proposition 2. Assume that the network’s dynamics are described by equation
2.2 and that W = uvT , where u, v ∈ R

N are nonzero vectors.
Suppose that σ and μ are permitted sets. Further suppose that μ is a maximal

codeword.
Then σ ∩ μ is a permitted set. In particular, since P�(W ) is maximum-

intersection complete, it is a convex code.

Proof. Let μ, σ ∈ P�(W ), where μ is maximal. Let x∗ = (�(I1), . . . , �(IN ))
and y∗ = (�(L1), . . . , �(LN )) be asymptotically stable fixed points associ-
ated with μ and σ , respectively.

We need an observation pertaining to neurons that are not part of μ.
Since μ is a maximal codeword, it follows that for any k /∈ μ, μ̃ = μ ∪ {k}
is not permitted. In other words, if z∗ = (�(J1), . . . , �(JN )) is a fixed point
of the dynamics such that |�′(Ji)| > ron for all i ∈ μ̃ and |�′(J j )| ≤ roff for all
j /∈ μ̃, then tr(�μ̃W ) ≥ 1, where �μ̃ = �(z∗). We make a particular choice
for Ji, setting Ji = Ii for all i �= k. However, the important point is that we let
Jk be any value satisfying |�′(Jk)| > ron. Observing that tr(�μW ) < 1, where
�μ = �(x∗), and putting together the inequalities



Permitted Sets and Convex Coding in Nonthreshold Linear Networks 1991

0 > −1 + tr(�μW ) = −1 + ukvk�
′(Ik) +

∑
i∈[N]\{k}

uivi�
′(Ii), and

−1 + tr(�μ̃W ) = −1 + ukvk�
′(Jk) +

∑
i∈[N]\{k}

uivi�
′(Ii) ≥ 0,

we see that

ukvk
(
�′(Jk) − �′(Ik)

)
> 0. (4.1)

We reiterate that the inequality 4.1 must hold for any k /∈ μ and any Jk ∈ R

satisfying |�′(Jk)| > ron.
Next, set τ = μ ∩ σ . Assume that τ is a strict subset of σ . Further, assume

that τ �= ∅ (since ∅ is always permitted).
We define x̃∗ to be a fixed point associated with τ by starting with

the fixed point y∗ (the fixed point associated with σ ), then making all
neurons on σ\τ be unresponsive by setting them equal to the values
from x∗ (the fixed point associated with μ). In order words, define x̃∗ =
(�(̃I1), . . . , �(̃IN )) to be such that x̃∗

i = �(Li) for any i ∈ τ ∪ ([N]\σ ), and
x̃∗

j = �(I j ) for j ∈ σ\τ . By lemma 1, there is b ∈ R
N such that x̃∗ is a fixed

point associated with τ .
We will show that x̃∗ is asymptotically stable:

−1 + tr(�τW ) = −1 +
∑
i∈τ

uivi�
′(Li) +

∑
j∈[N]\σ

ujv j�
′(Lj ) +

∑
j∈σ\τ

ujv j�
′(I j )

=
⎛⎝−1 +

∑
i∈τ

uivi�
′(Li) +

∑
j∈[N]\σ

ujv j�
′(Lj ) +

∑
l∈σ\τ

ulvl�
′(Ll )

⎞⎠
+
∑

l∈σ\τ
ulvl

(
�′(Il ) − �′(Ll )

)
.

Recalling that y∗ = (�(L1), . . . , �(LN )) is an asymptotically stable fixed
point associated with σ , observe that

∑
l∈σ\τ

ulvl
(
�′(Il ) − �′(Ll )

)
< 0

by inequality 4.1, given that |�′(Ll )| > ron. Moreover,

−1 +
∑
i∈τ

uivi�
′(Li) +

∑
j∈[N]\σ

ujv j�
′(Lj ) +

∑
l∈σ\τ

ulvl�
′(Ll ) = tr(�(y∗)W ) − 1 < 0
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by the assumption that σ is permitted. Therefore, −1 + tr(WτW ) < 0 so that
τ is in P�(W ). We have shown that μ ∩ σ is a permitted set and P�(W ) is
maximum-intersection complete. �

4.2.2 Perturbation of Rank-One Synaptic Weight Matrices. Next, we tackle
a perturbed version of proposition 2. The notation || · ||max is the max matrix
norm (Horn & Johnson, 2012); that is, if A = (ai j ) is an N × N matrix, then

||A||max = max
1≤i, j≤N

|ai j|.

In neurobiological terms, theorem 1 has almost the same interpretation as
proposition 2, except that we relax the requirement that the synaptic weight
matrix be low-dimensional. It turns out that the conclusion of proposition
1 still holds if the synaptic weight matrix is required to be sufficiently close
to a rank-one matrix.

Theorem 1. Assume that the network’s dynamics are described by equation 2.2
and that W = uvT , where u, v ∈ R

N are nonzero vectors. Suppose that u jv j �= 0
for all j ∈ {1, 2, . . . , N}. Let P be an N × N matrix.

There exists dP > 0 depending on P such that if it turns out that ||P||max < dP,
then the following it true: for any μ, σ ∈ P�(W + P), where μ is maximal, we have
that μ ∩ σ ∈ P�(W + P). In particular, since P�(W ) is maximum-intersection
complete, it is a convex code.

Proof. See the appendix. �

5 Discussion

In Hahnloser et al. (2003), the notion of permitted sets of Dẋ + x = [Wx +
b]+ was introduced and analyzed. In that setting, the nonzero entries of an
asymptotically stable fixed point correspond to active neurons (and zero
entries correspond to neurons that are not active). If the rectifier [·]+ is
replaced by an activation function � that is nonnegative continuous and
piecewise C1 such that �′(s) → 0 as s → −∞, then it is not generally possi-
ble to dichotomize the coordinates of asymptotically stable fixed points of
Dẋ + x = �(Wx + b) into active and not active neurons.

In order to address the above gap, we define permitted sets in a more
general setting by changing the focus from neural activity to a notion of re-
sponsiveness that is based on the gain �′ of each neuron. By introducing
user-chosen responsiveness thresholds roff and ron, we categorize neurons
as responsive, marginally responsive, or unresponsive. In our framework,
permitted sets are groups of neurons that can be made stably coresponsive
(while all other neurons are unresponsive). A user can choose the respon-
siveness thresholds to create a definition of responsiveness that reflects the
nature of the neurons under consideration. A stricter definition for a set
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being considered coresponsive can be made by creating a gap between roff
and ron. Alternatively, one can set ron = roff so that every neuron is catego-
rized as responsive or unresponsive (eliminating the marginally responsive
category). Although the framework will yield results for any choice of roff
and ron, the resulting combinatorial code will be nontrivial only if ron is
chosen large enough so that some groups of neurons cannot be made sta-
bly coresponsive, that is, so that some sets are forbidden and are not in the
combinatorial code.

In the special case that ron = roff = 0, �(x) = max(x, 0) and W is sym-
metric, our framework for permitted sets recovers the TLN version of
permitted sets introduced in Hahnloser et al. (2003). With this choice of pa-
rameters, our notion of a responsive neuron matches their definition of an
active neuron having �(x) > 0. In their framework, a nonempty subset σ

of {1, 2, . . . , N} is permitted depending on the eigenvalues of the principal
submatrix of W − I built from removing the rows and columns not indexed
by σ . When applying our framework to the TLN, we obtain the eigenval-
ues of that principal submatrix (plus additional eigenvalues of −1) from the
Jacobian matrix �W − I, where for the TLN, the effective gain matrix � (de-
fined in equation 3.1) becomes a diagonal matrix with �ii = 1 if i ∈ σ and
�ii = 0 otherwise.

Finally, when W is almost a rank-one synaptic weight matrix, we proved
in theorem 1 that P�(W ) is a convex code. Low-rank synaptic weight
matrices appear in multiple other models and lead to models that dis-
play desirable computational properties. For example, in the theory of flex-
ible memory networks (Curto et al., 2012), rank-one matrices appear in
the decomposition of synaptic weight matrices of networks that are max-
imally flexible. In another context where again the synaptic weight ma-
trix is thought of as the sum of a low-rank matrix and a perturbation, it
is shown that a low-rank connectivity matrix leads to low-dimensional dy-
namics in a class of models the authors call low-rank recurrent networks
(Mastrogiuseppe & Ostojic, 2018).

We highlight a few limits of the framework we presented. First, find-
ing the permitted sets P�(W ) of Dẋ + x = �(Wx + b) is challenging: assess-
ing the stability of fixed points is activity-dependent, a shortcoming that
permitted sets in the TLN regime do not suffer. Although one can prove
general structural results about P�(W ), as in theorem 1, explicitly calculat-
ing the members of P�(W ) can be computationally expensive. Second, al-
though proposition 1 gives some guidance about choosing responsiveness
thresholds, the converse of the proposition is not true. Even if one chooses
ron > 1/|||W |||, there is no guarantee that P�(W ) will be nontrivial. As we
have not found general criteria for choosing the thresholds, it is likely that
the user will need to make use of additional information about the network
in order to determine reasonable responsiveness thresholds.

The theory of permitted sets was introduced in the early 2000s in the con-
text of threshold-linear networks. Researchers have found necessary and
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sufficient conditions under which symmetric TLNs converge to a set of at-
tractive fixed points and under which the network is multiattractive (Hahn-
loser et al., 2003). Furthermore, encoding neural codes in TLNs has been
studied (Curto et al., 2013). Changing the basis of permitted sets from active
to responsive neurons allowed us to generalize this framework to a large
class of firing-rate neuron models. More work is needed to determine how,
for example, multiattractiveness or neural encoding rules can be general-
ized to our new framework involving responsiveness thresholds in general
firing rate models.

Appendix

A.1 Proof of Lemmas 1 and 2. We prove the two lemmas presented in
section 3.

Proof of Lemma 1. Let b = I∗ − Wx∗, where

I∗ ∈ �−1(x∗
1 ) × �−1(x∗

2 ) × · · · × �−1(x∗
N ).

Then

�(Wx∗ + b) = �(Wx∗ + I∗ − Wx∗)

= (�(I∗1 ),�(I∗2 ), . . . , �(I∗N ))

= (x∗
1, x∗

2, . . . , x∗
N )

= x∗.

Hence, if b = I∗ − Wx∗, then �(Wx∗ + b) = x∗, which shows that x∗ is a fixed
point of Dẋ + x = �(Wx + b). �
Proof of Lemma 2. Recall that x∗ is an asymptotically stable fixed point
of the dynamics if and only if JF(x∗) = �(x∗)W − I is stable, where �(x∗)
is the diagonal matrix defined in equation 3.1. The eigenvalues of JF(x∗)
are of the form λ − 1, where λ is an eigenvalue of �(x∗)W . Since �(x∗)W
is rank one, the eigenvalues of �(x∗)W will be 0 and tr(�(x∗)W ); therefore,
the eigenvalues of �(x∗)W − I will be −1 and tr(�(x∗)W ) − 1. Asymptotic
stability of x∗ corresponds to tr(�(x∗)W ) − 1 < 0.

By lemma 1, there exists an I∗ in �−1(x∗
1 ) × · · · × �−1(x∗

N ) such that x∗ =
�(Wx∗ + b), where b = I∗ − Wx∗. In particular, for all i ∈ {1, 2, . . . , N},

�(x∗)ii = �′(W (i) · x∗ + bi)

= �′(W (i) · x∗ + I∗i − W (i) · x∗)

= �′(I∗i ).
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(Recall that W (i) · x∗ denotes the dot product between the ith column of W
and x∗.) Therefore, we can rewrite tr(�(x∗)W ) − 1 < 0 as

tr(�(x∗)W ) =
N∑

i=1

uivi�
′(I∗i ) < 1. �

A.2 Nonconvexity of RF Code in Example 3. We will show that

C2 = {∅, {1}, {2}, {3}, {4}, {2, 3}, {2, 4}, {1, 2, 3}, {1, 2, 4}}

is a not a convex code: since {1, 2} /∈ C2, it follows that (U1 ∩ U2)\(U3 ∪ U4) =
∅. (See the discussion in section 4.1 preceding example 3 for the definition
of RF code.) This implies that U1 ∩ U2 ⊆ U3 ∪ U4. Hence,

U1 ∩ U2 = (U1 ∩ U2 ∩ U3) ∪ (U1 ∩ U2 ∩ U4).

Notice that U1 ∩ U2 �= ∅ because U1 ∩ U2 ∩ U3 �= ∅ (since {1, 2, 3} ∈ C2). Fur-
thermore, U1 ∩ U2 ∩ U3 and U1 ∩ U2 ∩ U4 are disjoint because {1, 2, 3, 4} /∈
C2. Hence, U1 ∩ U2 is nonconvex as we have shown that U1 ∩ U2 is discon-
nected, that is, it is the union of two disjoint nonempty open sets. This
implies that either U1 or U2 is nonconvex because the intersection of two
convex sets is a convex set.

A.3 Proof of Theorem 1. Here we provide a full proof of theorem 1,
which is the perturbed version of proposition 2. First we review what it
means for the spectra of two matrices to be close given that the corre-
sponding matrices are close. The space of N × N matrices with complex
entries, denoted C

N×N, is naturally topologized by the maximum norm
(Horn & Johnson, 2012), or “max-norm” for short, on C

N2
, that is, for any

A = (ai j ) ∈ C
N×N,

||A||max = max
i, j

|ai j|.

Let SN denote the symmetric group on N elements and AN the quotient
space C

N/SN. That is, if z,w ∈ AN, then z and w are equivalent if and only
if there exists a permutation π in SN such that

(z1, z2, . . . , zN ) = (wπ (1),wπ (2), . . . , wπ (N) ).

With such a notion of equivalence for any two elements in AN, it turns out
that AN can be topologized (Serre, 2020) via the metric

d(w, z) = min
π∈SN

max
1≤ j≤N

|w j − zπ ( j)|.
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This metric turns AN into a complete metric space. Further, if we denote the
set of eigenvalues of an N × N matrix A by Spec(A), the map Spec : CN×N →
AN defined by M �→ Spec(M) is continuous (Serre, 2020).

Now we have the notions for lemma 3 that we will use to show theorem
1. As usual, we denote {1, 2, . . . , N} by [N].

Lemma 3. Let A ∈ C
N×N and ε > 0 be given. Suppose d > 0 is such that for any

X ∈ C
N×N satisfying ||A − X||max < d, we have

min
π∈SN

max
1≤ j≤N

∣∣λ j(A) − λπ ( j)(X )
∣∣ < ε

(where λn(A) and λm(X ) denote an nth eigenvalue of A and an mth eigenvalue of
X, respectively). If X0 ∈ C

N×N is such that ||A − X0||max < d, then

Spec(X0) = {λ j + 
 j : j ∈ [N] ; λ j ∈ Spec(A) ; |
 j| < ε}.

Proof. By continuity of Spec : CN×N → AN at A, there is d > 0 such that for
any X ∈ C

N×N satisfying ||A − X||max < d,

min
π∈SN

max
1≤ j≤N

∣∣λ j(A) − λπ ( j)(X )
∣∣ < ε.

Let X0 ∈ C
N×N be such that ||A − X0||max < d.

We show next that Spec(X0) has the form in the conclusion of the lemma.
Let π0 ∈ SN be such that

min
π∈SN

max
1≤ j≤N

∣∣λ j(A) − λπ ( j)(X0)
∣∣ = max

1≤ j≤N

∣∣λ j(A) − λπ0( j)(X0)
∣∣ .

Define 
 j = λπ0( j)(X0) − λ j, where λ j ∈ Spec(A), for all j ∈ [N], so we have

λπ0( j)(X0) = λ j + 
 j.

Note that by definition |
 j| < ε for all j ∈ [N]. Thus,

Spec(X0) = {λ j + 
 j : j ∈ [N] ; λ j ∈ Spec(A) ; |
 j| < ε}. �

Over the course of the proof of the next lemma, we use the following
notation: if ω is a subset of {1, 2, . . . , N} that is a permitted set, then

x∗
stable(ω) = (�(Iω1 ),�(Iω2 ), . . . , �(IωN ))
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will be used to denote an asymptotically stable fixed point supporting ω,
that is, Iωk ∈ R, |�′(Iωk )| > ron when k ∈ ω, and |�′(Iωj )| ≤ roff when j /∈ ω. We
will use the notation

x∗(ω) = (�(Iω1 ),�(Iω2 ), . . . , �(IωN ))

to refer to a fixed point supporting ω that may not be asymptotically sta-
ble. We will also write [N]<0 to denote the set of neurons for which there
is an input that makes them responsive and to have negative effective self-
coupling strength–specifically,

[N]<0 = {
k ∈ {1, 2, . . . , N} : there is α ∈ R such that ukvk�

′(α) < −ron
}
.

Remember that we use the term “effective self-coupling strength” for the
expression ukvk�

′(α). Finally, we use the notation d(S, c), whereS is a subset
of [N] and c is a positive constant, to denote a positive number satisfying
the following property: for any X ∈ C

N×N satisfying

||�(x∗(S ))W − I − X||max < d(S, c), (A.1)

we have

min
σ∈SN

max
1≤ j≤N

|λ j(�(x∗(S ))W − I) − λπ ( j)(X )| < c.

(If it is known that S is a permitted set, then we would denote the associated
asymptotically stable fixed point as x∗

stable(S ) instead of x∗(S ).) Here d(S, c)
is associated with invoking the continuity of Spec : CN×N → AN.

The next lemma, lemma 4, shows that if [N]<0 �= ∅ and there is a permit-
ted set σ missing a neuron n in [N]<0, then there is a permitted set consisting
of σ and n.
Lemma 4. Assume that the network’s dynamics are described by equation 2.2 and
that W = uvT , where u, v ∈ R

N are nonzero. Let P be an N × N matrix.
There exists a dP > 0 depending on P such that if it turns out that ||P||max <

dP, then the following is true: if σ ∈ P�(W + P) and n ∈ [N]<0 with n /∈ σ , then
σ ∪ {n} will be supported by a x∗

stable(σ ∪ {n}) such that unvn�
′(Iσ∪{n}

n ) < 0. (In
particular, σ ∪ {n} ∈ P�(W + P).)

Proof. First, we introduce two numbers, ε1 and dP, to quantify how much
we can perturb W . In order to define ε1, we consider the smallest negative
effective response gap: Given a neuron that (1) is unresponsive in some per-
mitted set and (2) can have an effective self-coupling strength that is neg-
ative when it is responsive, we take the difference between the strengths
under those conditions. We use ε1 to put a bound on the magnitude of the
contributions of the perturbation to the spectrum of the rank-one network.
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For every n ∈ [N]<0, let αn ∈ A be such that unvn�
′(αn) < 0. Let ε1 > 0 be

such that

ε1 < min

(
1, min

σ∈P�(W+P)
min

n/∈σ

n∈[N]<0

−unvn

2

(
�′(αn) − �′(Iσn )

))
, (A.2)

where, as outlined above, we denoted the stable fixed point supporting the
permitted set σ as x∗

stable(σ ) = (�(Iσ1 ), . . . , �(IσN )). Next, we define dP. The
role of dP is to place a bound on how large the entries of P are allowed to
be. For all n ∈ [N]<0 such that n /∈ σ , define

x∗(ωn) = (�(Iωn
1 ), . . . , �(Iωn

N )),

where ωn = σ ∪ {n}, Iωn
k = Iσk for k �= n, and Iωn

n = αn.
Let

δ1 = min

(
min

σ∈P�(W+P)
d (σ, ε1) , min

σ∈P� (W+P)
min

n/∈σ

n∈[N]<0

d (σ ∪ {n}, ε1)

)
(A.3)

(see the definition of d(S, c) in equation A.1) and

Ĩ = arg max
σ∈P� (W+P)

1≤k≤N

|�′(Iσk )|.

Define Ion = arg max
x∈{̃I,αi1 ,...,αim }

|�′(x)| and

M = |�′(Ion)|. (A.4)

Let �(x∗
stable(σ )) = �σ and �(x∗(ωn)) = �ωn . Observe that ||�σ ||max,

||�ωn ||max ≤ M: by the definition of effective gain of a network at x (see equa-
tion 3.1), if we are given

x∗ = (�(I1), . . . , �(IN )),

then b = I − Wx∗, where I = (I1, . . . , IN ), is such that x∗ is a fixed point.
Hence, for bounding ||�σ ||max and ||�ωn ||max, we have

|(�σ )ii| =
∣∣∣�′

(
W (i) · x∗

stable(σ ) + bi

)∣∣∣
= |�′(Iσi )| ≤ M

and similarly for |(�ωn )ii|.
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Let

dP = δ1

M
,

and suppose that ||P||max < dP.
Letting ωn and x∗(ωn) be as defined before, we know that x∗(ωn) is a fixed

point of the dynamics supporting ωn. As a result, it remains to prove that
x∗(ωn) is asymptotically stable.

Although the matrix max norm is not submultiplicative, it is easy to see
that if A is an N × N matrix and D is a diagonal N × N matrix, then

||DA||max ≤ ||D||max||A||max;

hence,

||�σW − I − (�σ (W + P) − I) ||max = ||�σ P||max

≤ ||�σ ||max||P||max

≤ M||P||max

< δ1

and

||�ωnW − I − (�ωn (W + P) − I) ||max = ||�ωn P||max

≤ ||�ωn ||max||P||max

≤ M||P||max

< δ1,

so it follows by lemma 3 that

Spec(�σ (W + P) − I) = {tr(�σW ) − 1 + 
σ
1 ,
σ

2 − 1, . . . ,
σ
N − 1} and

Spec(�ωn (W + P) − I) = {tr(�ωnW ) − 1 + 

ωn
1 ,


ωn
2 − 1, . . . , 


ωn
N − 1},

where

|
σ
k |, |
ωn

k | < ε1 (A.5)

for every k ∈ {1, 2, . . . , N}.
Note that Re(
σ

k ) − 1 < 0 and Re(
ωn
k ) − 1 < 0 for all k ∈ {2, 3, . . . , N}

because ε1 < 1 by equations A.2 and A.5. Thus, showing tr(�ωnW ) − 1 +
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Re(
ωn
1 ) < 0 will suffice to prove that x∗(ωn) is asymptotically stable:

tr(�ωnW ) − 1 + Re(
ωn
1 ) = −1 + Re(
ωn

1 ) +
∑
i∈ωn

uivi�
′(Iωn

i ) +
∑
j/∈ωn

u jv j�
′(Iωn

j )

= −1 + Re(
ωn
1 − 
σ

1 ) + Re(
σ
1 )

+ unvn�
′(αn) − unvn�

′(Iσn ) +
∑
i∈σ

uivi�
′(Iσi )

+
∑
j/∈σ

ujv j�
′(Iσj ).

Let η = 

ωn
1 − 
σ

1 . Since x∗
stable(σ ) is an asymptotically stable fixed point

supporting σ , it follows that

tr(�σW ) − 1 + Re(
σ
1 ) = −1 + Re(
σ

1 ) +
∑
i∈σ

uivi�
′(Iσi ) +

∑
j/∈σ

ujv j�
′(Iσj ) < 0.

As for the remaining terms, first recall that

−ε1 < Re(
ωn
1 ), Re(
σ

1 ) < ε1

by equation A.5, so

Re(η) = Re(
ωn
1 ) − Re(
σ

1 ) < ε1 − (−ε1) = 2ε1.

Thus,

Re(η) + unvn�
′(αn) − unvn�

′(Iσn ) < 2ε1 + unvn
(
�′(αn) − �′(Iσn )

)
< −umvm

(
�′(αm) − �′(Iμm)

)
+ unvn

(
�′(αn) − �′(Iσn )

)
≤ 0,

where μ ∈ P�(W + P) and m /∈ μ and m ∈ [N]<0 are such that

ε1 < −umvm

2

(
�′(αm) − �′(Iμm)

) ≤ −upvp

2

(
�′(αp) − �′(Iτp )

)
for every τ ∈ P�(W + P), p /∈ τ and p ∈ [N]<0.

Hence, tr(�ωnW ) − 1 + Re(
ωn
1 ) < 0, so ωn = σ ∪ {n} is permitted. �

Now we show that if σ is a permitted set and k ∈ σ ∩ [N]<0, then there ex-
ists an asymptotically stable fixed point supporting σ such that neuron k has
a negative effective self-coupling strength. As a consequence of lemma 5, we
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will be able to say that if σ ∈ P�(W + P), where W is a rank-one matrix and
P is a suitable perturbation, then there is an asymptotically stable fixed point
x∗

stable(σ ) supporting σ such that ukvk�
′(Iσk ) < 0 for every k ∈ σ ∩ [N]<0:

Lemma 5. Assume that the network’s dynamics are described by equation 2.2 and
that W = uvT , where u, v ∈ R

N are nonzero. Let P be an N × N matrix.
There exists a dP > 0 depending on P such that if it turns out that ||P||max < dP,

then the following is true: if σ ∈ P�(W + P), p ∈ σ ∩ [N]<0, and

x∗
stable(σ ) = (�(Iσ1 ), . . . , �(IσN ))

is an asymptotically stable fixed point supporting σ such that upvp�
′(Iσp ) > 0, then

there exists an asymptotically stable fixed point

x̃∗
stable(σ ) = (�(̃Iσ1 ), . . . , �(̃IσN ))

supporting σ such that upvp�
′ (̃Iσp ) < 0.

Proof. Let αk ∈ A be such that ukvk�
′(αk) < 0 for every k ∈ [N]<0. Let ε2 > 0

be such that

ε2 < min

⎛⎝1, min
σ∈P�(W+P)

min
k∈σ∩[N]<0

ukvk�′ (Iσk )>0

−ukvk

2

(
�′(αk) − �′(Iσk )

)⎞⎠. (A.6)

For every n ∈ σ , where σ ∈ P�(W + P), satisfying unvn�
′(Iσn ) > 0, define

x̃∗(σ ) = (�(̃Iσ1 ), . . . , �(̃IσN )),

where Ĩσk = Iσk for k �= n and Ĩσn = αn. Now define d̃σ > 0 such that for any
X ∈ C

N×N satisfying ||�(x̃∗(σ ))W − I − X||max < d̃σ ,

min
σ∈SN

max
1≤ j≤N

|λ j (�(x̃∗(σ ))W − I) − λπ ( j) (X ) | < ε2.

Let

δ2 = min

⎛⎝ δ1, min
σ∈P�(W+P)

min
n∈σ∩[N]<0

unvn�′ (Iσn )>0

d̃σ

⎞⎠. (A.7)

Let dP = δ2/M, where M is as defined in equation A.4. Suppose that
||P||max < dP.

Suppose σ ∈ P�(W + P) and n ∈ σ ∩ [N]<0. We know that x̃∗(σ ) is a fixed
point of the dynamics supporting σ ; it remains to prove that x̃∗(σ ) is asymp-
totically stable.
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Letting �σ = �(x∗
stable(σ )) and �̃σ = �(x̃∗(σ )), we observe that

Spec(�σ (W + P) − I) = {tr(�σW ) − 1 + 
σ
1 ,
σ

2 − 1, . . . , 
σ
N − 1}

and

Spec(�̃σ (W + P) − I) = {tr(�̃σW ) − 1 + 
̃σ
1 , 
̃σ

2 − 1, . . . , 
̃σ
N − 1},

where |
σ
k |, |
̃σ

k | < ε2 for every k ∈ {1, 2, . . . , N}, by lemma 3.
Next, we show that tr(�̃σW ) − 1 + Re(
̃σ

1 ) < 0:

tr(�̃σW ) − 1 + Re(
̃σ
1 ) = −1 + Re(
̃σ

1 − 
σ
1 ) + Re(
σ

1 )

+ unvn�
′ (̃Iσn ) − unvn�

′(Iσn ) +
∑
i∈σ

uivi�
′(Iσi )

+
∑
j/∈σ

ujv j�
′(Iσj ).

Since x∗
stable(σ ) is asymptotically stable, tr(�σW ) − 1 + Re(
σ

1 ) < 0. Further,
n ∈ σ is such that Ĩσn = αn and unvn�

′(αn) < 0, so

Re(η) + unvn�
′ (̃Iσn ) − unvn�

′(Iσn ) < 2ε2 + unvn
(
�′(αn) − �′(Iσn )

) ≤ 0,

where η = 
̃σ
1 − 
σ

1 . �

Next, we need an auxiliary result that tells us which neurons are re-
cruited by maximal permitted sets of almost rank-one networks. Lemma
6 shows that if an ensemble of neurons is permitted and it is maximal (with
respect to set containment), then every neuron that can be made responsive
by using an input that makes its effective self-coupling strength negative
must be part of such a maximal permitted set. In the unperturbed, rank-
one synaptic weight matrices, such a statement is immediate: stability of
the dynamics is essentially described by the trace of the effective gain of the
network, so if an ensemble of neurons is permitted and maximal, then any
neuron in the network that could have a negative effective self-coupling
strength will preserve the stability of the ensemble.

Lemma 6. Assume that the network’s dynamics are described by equation 2.2 and
that W = uvT , where u, v ∈ R

N are nonzero. Let P be an N × N matrix.
There is dP > 0 depending on P such that if it turns out that ||P||max < dP, then

the following is true: each maximal permitted set contains every neuron whose effec-
tive self-coupling strength can be negative—that is, [N]<0 ⊆ μ for every maximal
μ ∈ P�(W + P).
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Proof. Define ε > 0 to be such that

ε < min (1,C1,C2, ε1, ε2) , (A.8)

where

C1 = min
σ,ω∈P� (W+P)

min
k∈σ\ω

k∈[N]<0

−ukvk

2

(
�′(Iσk ) − �′(Iωk )

)
(A.9)

and

C2 = min
σ,ω∈P� (W+P)

min
l∈σ\ω

l /∈[N]<0
ul vl �=0

ulvl

2

(
�′(Iσl ) − �′(Iωl )

)
. (A.10)

Here ε1 and ε2 are as defined in equations A.2 and A.6, respectively. We
remark that by lemma 5, we choose x∗

stable(σ ), where σ in P�(W + P), such
that ukvk�

′(Iσk ) < 0 for all k ∈ σ ∩ [N]<0.
If s ∈ [N]<0 such that s /∈ σ , where σ ∈ P�(W + P), define

x∗(ω) = (� (Iω1 ) ,� (Iω2 ) , . . . , � (IωN )) ,

where ω = σ ∪ {s}, be such that

Iω
k = Iσk for all k �= s

and

Iωs = Iρs satisfying usvs�
′ (Iωs ) < 0 for some ρ ∈ P�(W + P). (A.11)

(For defining Iωs in equation A.11, we know that Iρs will exist by lemma 4: if
[N]<0 �= ∅, σ is permitted, and s ∈ [N]<0 is such that s /∈ σ , then ρ = σ ∪ {s}
is permitted and x∗

stable(ρ) is such that usvs�
′(Iρs ) < 0.) Define

δ3 = min

(
δ2, min

σ∈P�(W+P)
min

s/∈σ

s∈[N]<0

d (σ ∪ {s}, ε)

)
(A.12)

(see the definition of d(S, c) in equation A.1) where δ2 is as defined in equa-
tion A.7. Let dP = δ3/M. Assume that ||P||max < dP.

Now that we have constructed ε and dP, we prove the conclusion of
lemma 6 by way of contradiction. The impossibility is reached when we
show the difference between the contributions of the perturbation to the
spectrum to a maximal permitted set and a carefully selected augmented
ensemble is a negative number.
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By way of contradiction, suppose μ is a maximal permitted set such that
[N]<0 �⊆ μ and let

x∗
stable(μ) = (�(Iμ1 ),�(Iμ2 ), . . . , �(IμN ))

be an asymptotically stable fixed point supporting μ. Let s ∈ [N]<0 be such
that s /∈ μ and set

μ̃ = μ ∪ {s};

we will demonstrate that μ̃ ∈ P�(W + P) (which will contradict μ being a
maximal codeword).

Let

x∗(μ̃) = (�(Iμ̃1 ),�(Iμ̃2 ), . . . , �(Iμ̃N ))

be a fixed point (so Iμ̃s is as defined in equation A.11). We focus next on
showing that x∗(μ̃) is in fact asymptotically stable.

If we let �μ = �(x∗
stable(μ)) and �μ̃ = �(x∗(μ̃)),

Spec(�μ(W + P) − I) = {
tr(�μW ) − 1 + 


μ

1 ,

μ

2 − 1, . . . , 

μ

N − 1
}

and

Spec(�μ̃(W + P) − I) =
{

tr(�μ̃W ) − 1 + 

μ̃

1 ,

μ̃

2 − 1, . . . , 

μ̃

N − 1
}

,

where |
μ

i |, |
μ̃

i | < ε.
Finally, we prove that �μ̃(W + P) − I is stable:

tr(�μ̃W ) − 1 + Re(
μ̃

1 ) = −1 +
⎛⎝∑

i∈μ

uivi�
′(Iμi ) + usvs�

′(Iμ̃s )

⎞⎠
+
⎛⎝∑

j/∈μ

ujv j�
′(Iμj ) − usvs�

′(Iμs )

⎞⎠
+ (Re(
μ

1 ) + Re(η)
)
,

where η = 

μ̃

1 − 

μ

1 and we noted that

∑
i∈μ̃

uivi�
′(Iμ̃i ) = usvs�

′(Iμ̃s ) +
∑
i∈μ

uivi�
′(Iμi )
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(because Iμ̃i = Iμi for i �= s and μ̃ = μ ∪ {s} by definition) and

∑
j/∈μ̃

ujv j�
′(Iμ̃j ) = −usvs�

′(Iμs ) +
∑
j/∈μ

ujv j�
′(Iμj ).

Since x∗
stable(μ) is asymptotically stable, tr(�μW ) − 1 + Re(
μ

1 ) < 0. Finally,
after rewriting Iμ̃s as Iρs for some ρ ∈ P�(W + P) such that usvs�

′(Iρs ) < 0, we
see

Re(η) + usvs�
′(Iμ̃s ) − usvs�

′(Iμs ) = Re(η) + usvs�
′(Iρs ) − usvs�

′(Iμs )

< 2ε + usvs
(
�′(Iρs ) − �′(Iμs )

)
< 0,

where in the last step we used the definition of ε (see equations A.8 and
A.9). We conclude that [N]<0 ⊆ μ. �

Next, we prove that P�(W + P) is a convex code when W is a rank-one
synaptic weight matrix. Recall that we assume that W is a rank-one synaptic
weight matrix and � is a continuous nonnegative piecewise C1 activation
function (see the statement of theorem 1 in section 4). In the following proof,
define min

x∈∅
f (x) = +∞.

Proof of Theorem 1. If μ and σ are permitted sets such that μ is maximal,
let

x∗(μ ∩ σ ) = (
�
(
Iμ∩σ

1

)
,�

(
Iμ∩σ

2

)
, . . . , �

(
Iμ∩σ

N

))
, (A.13)

where Iμ∩σ

i = Iσi for every i ∈ μ ∩ σ or i ∈ [N]\σ , and Iμ∩σ

j = Iμj for every
j ∈ σ\(μ ∩ σ ). Let

δ = min

(
δ3, min

μ∈P� (W+P)
μ maximal

min
σ∈P�(W+P)

d (μ ∩ σ, ε)

)

(see the definition of d(S, c) in equation A.1), where δ3 is as defined in equa-
tion A.12. Define dP = δ/M, where M is as defined in equation A.4, and as-
sume that ||P||max < dP.

Next, let μ, σ ∈ P�(W + P), where μ is maximal. Let τ = μ ∩ σ , where
τ ⊂ σ is such that τ �= σ , and x∗(τ ) = (�(Iτ1 ), . . . , �(IτN )). Note that x∗(τ )
supports τ by construction. Our next step in the argument is showing that
x∗(τ ) is in fact an asymptotically stable fixed point supporting τ .

As usual, for readibility’s sake, let �σ = �(x∗
stable(σ )) and �τ = �(x∗(τ )).

Then
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Spec(�σ (W + P) − I) = {
tr(�σW ) − 1 + 
σ

1 ,
σ
2 − 1, . . . ,
σ

N − 1
}

and

Spec(�τ (W + P) − I) = {
tr(�τW ) − 1 + 
τ

1,

τ
2 − 1, . . . ,
τ

N − 1
}
,

where |
σ
k |, |
τ

k | < ε for every k ∈ [N].
Now, define η = 
τ

1 − 
σ
1 . We next show that tr(�τW ) − 1 + 
τ

1 has a
negative real part:

−1 + tr(�τW ) + Re(
τ
1 ) = −1 +

∑
i∈τ

uivi�
′(Iτi ) +

∑
j∈[N]\σ

ujv j�
′(Iτj )

+
∑
j∈σ\τ

ujv j�
′(Iτj ) + Re(η) + Re(
σ

1 )

=
∑

l∈σ\τ
ulvl (�′(Iτl ) − �′(Iσl )) + Re(η)

+
⎛⎝−1 +

∑
i∈τ

uivi�
′(Iτi ) +

∑
l∈σ\τ

ulvl�
′(Iσl )

+
∑

j∈[N]\σ
ujv j�

′(Iτj ) + Re(
σ
1 )

⎞⎠ .

First, we show that

−1 +
∑
i∈τ

uivi�
′(Iτi ) +

∑
l∈σ\τ

ulvl�
′(Iσl ) +

∑
j∈[N]\σ

ujv j�
′(Iτj ) + Re(
σ

1 ) (A.14)

is negative by showing that it is equal to tr(�σW ) − 1 + Re(
σ
1 ). Observe

that since Iτi = Iσi for every i ∈ τ or i ∈ [N]\σ ,

∑
i∈τ

uivi�
′(Iτi ) =

∑
i∈τ

uivi�
′(Iσi ) and

∑
j∈[N]\σ

ujv j�
′(Iτj ) =

∑
j∈[N]\σ

ujv j�
′(Iσj ),

so we see that equation A.14 is equal to tr(�σW ) − 1 + Re(
σ
1 ), which is a

negative number by the assumption that �σ (W + P) − I is stable.
Second, we show that what remains of −1 + tr(�τW ) + Re(
τ

1 ) is also
negative:∑

l∈σ\τ
ulvl

(
�′(Iτl ) − �′(Iσl )

)+ Re(η). (A.15)
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Observe that since τ = σ ∩ μ by definition, l ∈ σ\τ implies l /∈ μ. It is worth
remembering at this stage that if a neuron l is in a permitted set σ , then its
effective self-coupling strength satisfies |ulvl�

′(Iσl )| > ron. Otherwise, if l is
not in σ , then l must be unresponsive: |ulvl�

′(Iσl )| ≤ roff. Next, we know
that μ is maximal by assumption, so it follows that l /∈ [N]<0 by lemma 6.
Therefore, x∗

stable(σ ) is such that

ulvl�
′(Iσl ) > 0,

which implies that

ulvl
(
�′(Iτl ) − �′(Iσl )

)
< 0 (A.16)

for any l ∈ σ\τ . By the definition of ε in equation A.8 and C2 in equation
A.10,

2ε < −ukvk
(
�′(Iθk ) − �′(Iρk )

)
(A.17)

for all k ∈ ρ\θ , where ρ, θ ∈ P�(W + P), such that ukvk�
′(Iρk ) > 0. By equa-

tions A.16 and A.17, we have for any l ∈ σ\τ that

2ε + ulvl
(
�′(Iτl ) − �′(Iσl )

)
< 2ε + ulvl

(
�′(Iμl ) − �′(Iσl )

)
< 0,

where we used the fact that Iτl = Iμl for every l ∈ σ\τ (see the definition of
x∗(μ ∩ σ ) in equation A.13). Hence, we have exhibited a fixed-point x∗(τ )
that is asymptotically stable and that supports τ , so we conclude that τ ∈
P�(W + P). �

Acknowledgments

We thank Carina Curto and Vladimir Itskov for helpful conversations.

References

Cruz, J., Giusti, C., Itskov, V., & Kronholm, B. (2019). On open and closed convex
codes. Discrete and Computational Geometry, 61(2), 247–270. 10.1007/s00454-018
-00050-1, PubMed: 31571705

Curto, C., Degeratu, A., & Itskov, V. (2012). Flexible memory networks. Bul-
letin of Mathematical Biology, 74(3), 590–614. 10.1007/s11538-011-9678-9,
PubMed: 21826564

Curto, C., Degeratu, A., & Itskov, V. (2013). Encoding binary neural codes in
networks of threshold-linear neurons. Neural Computation, 25(11), 2858–2903.
10.1162/NECO_a_00504, PubMed: 23895048

https://doi.org/10.1007/s00454-018-00050-1
https://www.ncbi.nlm.nih.gov/pubmed/31571705
https://doi.org/10.1007/s11538-011-9678-9
https://www.ncbi.nlm.nih.gov/pubmed/21826564
https://doi.org/10.1162/NECO_a_00504
https://www.ncbi.nlm.nih.gov/pubmed/23895048


2008 S. Collazos and D. Nykamp

Curto, C., Gross, E., Jeffries, J., Morrison, K., Omar, M., Rosen, Z., . . . Youngs, N.
(2017). What makes a neural code convex? SIAM Journal on Applied Algebra and
Geometry, 1(1), 222–238. 10.1137/16M1073170

Dayan, P., & Abbott, L. F. (2001). Theoretical neuroscience. Cambridge, MA: MIT Press.
Hahnloser, R. H., Sarpeshkar, R., Mahowald, M. A., Douglas, R. J., & Seung, H. S.

(2000). Digital selection and analogue amplification coexist in a cortex-inspired
silicon circuit. Nature, 405(6789), 947–951. 10.1038/35016072, PubMed: 10879535

Hahnloser, R. H., Seung, H. S., & Slotine, J.-J. (2003). Permitted and forbidden
sets in symmetric threshold-linear networks. Neural Computation, 15(3), 621–638.
10.1162/089976603321192103, PubMed: 12620160

Harris, K. D. (2005). Neural signatures of cell assembly organization. Nature Reviews
Neuroscience, 6(5), 399–407. 10.1038/nrn1669, PubMed: 15861182

Hebb, D. O. (2005). The organization of behavior: A neuropsychological theory. London:
Psychology Press.

Horn, R. A., & Johnson, C. R. (2012). Matrix analysis. Cambridge: Cambridge Univer-
sity Press.

Mastrogiuseppe, F., & Ostojic, S. (2018). Linking connectivity, dynamics, and compu-
tations in low-rank recurrent neural networks. Neuron, 99(3), 609–623. 10.1016/
j.neuron.2018.07.003, PubMed: 30057201

Osborne, L. C., Palmer, S. E., Lisberger, S. G., & Bialek, W. (2008). The neural basis
for combinatorial coding in a cortical population response. Journal of Neuroscience,
28(50), 13522–13531. 10.1523/JNEUROSCI.4390-08.2008, PubMed: 19074026

Serre, D. (2020). Matrices: Theory and applications (2nd ed.). Berlin: Springer-Verlag.
Thompson, A. W., & Scott, E. K. (2016). Characterisation of sensitivity and orienta-

tion tuning for visually responsive ensembles in the zebrafish tectum. Scientific
Reports, 6.

Wilson, M., & McNaughton, B. (1994). Dynamics of the hippocampal ensemble code
for space. Science, 264(5155), 16–16. 10.1126/science.264.5155.16.c

Received December 2, 2021; accepted April 19, 2022.

https://doi.org/10.1137/16M1073170
https://doi.org/10.1038/35016072
https://www.ncbi.nlm.nih.gov/pubmed/10879535
https://doi.org/10.1162/089976603321192103
https://www.ncbi.nlm.nih.gov/pubmed/12620160
https://doi.org/10.1038/nrn1669
https://www.ncbi.nlm.nih.gov/pubmed/15861182
https://doi.org/10.1016/j.neuron.2018.07.003
https://www.ncbi.nlm.nih.gov/pubmed/30057201
https://doi.org/10.1523/JNEUROSCI.4390-08.2008
https://www.ncbi.nlm.nih.gov/pubmed/19074026
https://doi.org/10.1126/science.264.5155.16.c

	Permitted Sets and Convex Coding in Nonthreshold Linear Networks
	tmp.1662124831.pdf.Uiu6L

