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Hypergeometric supercongruences

David P. Roberts and Fernando Rodriguez Villegas

Abstract We discuss two related principles for hypergeometric supercongrences,
one related to accelerated convergence and the other to the vanishing of Hodge
numbers.

1 Introduction

At the conference, we added two related principles to the study of supercongruences
involving the polynomials obtained by truncating hypergeometric series. By a su-
percongruence we mean a congruence which somewhat unexpectedly remains valid
when the prime modulus p is replaced by pr for some integer r > 1. We call r the
depth of the supercongruence.

The first principle is that a supercongruence is the first instance of a sequence
of similar supercongruences, reflecting accelerated convergence of certain Dwork
quotients. The second is that splittings of underlying motives can be viewed as the
conceptual source of supercongruences, with the depth of the congruence being
governed by the vanishing of Hodge numbers.

We present these principles here in a limited context, so that they can be seen as
clearly as possible. Let α = (α1, . . . , αd) be a length d vector of rational numbers in
(0,1) and let β = 1d = (1, . . . ,1). We assume that that multiplication by any integer
coprime to the least common multiple m of the denominators of the αi’s preserves
the multiset {α1, . . . ,αd} modulo Z.

The associated classical hypergeometric series and its p-power truncations, for p
prime, are as follows.
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F(α,1d |t) :=
∞

∑
k=0

(α1)k · · ·(αd)k

k!d tk, Fs(α,1d |t) :=
ps−1

∑
k=0

(α1)k · · ·(αd)k

k!d tk.

Our starting point was the list CY 3 of fourteen α = (α1, . . . ,α4) associated to
certain families of Calabi-Yau threefolds discussed in [7]. Each has a corresponding
normalized Hecke eigenform f = ∑anqn of weight four and trivial character. For
each, it was conjectured in [7] that

F1(α,1d |1)≡ ap mod p3, p - map. (1)

Some of these cases have been settled. For example, the case α =(1/5,2/5,3/5,4/5)
was proved by McCarthy [5], the corresponding modular form having level 25 [8].
Just before submitting this note, Long, Tu, Yui, and Zudilin [3] announced two dif-
ferent proofs of (1) for all fourteen cases in CY 3.

2 Convergence to the unit root and Hodge gaps

The two principles stem from observations about common behavior of the examples
in CY 3. The first observation is that each supercongruence (1) seems to be part of a
sequence. Dwork proved [2] that for p - m

Fs+1(α,1d | t)
Fs(α,1d | t p)

≡ Fs(α,1d | t)
Fs−1(α,1d | t p)

mod ps, s≥ 0. (2)

Moreover, the rational functions Fs+1(α,1d | t)/Fs(α,1d | t p) converge as s→ ∞ to
a Krasner analytic function which can be evaluated at a Teichmüller representative
Teich(τ) which is not a zero of F1 giving the unit root γp of the corresponding
local L-series at p.

For α ∈CY 3, computations suggest

Fs(α,1d |1)
Fs−1(α,1d |1)

≡ γp mod p3s, p - map, s > 0, (3)

where γp ∈ Zp is the root of T 2− apT + p3 not divisible by p. Note that the case
s = 1 reduces to (1) since γp ≡ ap mod p3.

Our second observation is that the appearence of a congruence to a power p3s as
opposed to the expected ps is related to Hodge theory. Consider the hypergeometric
family of motives H(α,1d | t) (see [1] for a computer implementation). For any τ ∈
P1(Q)\{0,1,∞} the motive H(α,1d |τ) is defined over Q, has rank d, weight d−1
and its only non-zero Hodge numbers are (hd−1,0, . . . ,h0,d−1) = (1, . . . ,1). When
τ = 1 there is a mild degeneration and the rank drops to d−1.

For α ∈CY 3, the motive for τ = 1 is the direct sum, up to semi-simplification, of
a Tate motive Q(−1) and the motive A = M( f ) of the corresponding Hecke eigen-
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form f of weight four. The Hodge numbers of A are (1,0,0,1). We view the gap of
three between the initial 1 and the next 1 as explaining the supercongruences (3).

3 A congruence of depth five

To illustrate our two observations further, let α = (1/2,1/2,1/2,1/2,1/2,1/2). We
learned at the conference that this example was recently studied by Osborn, Straub,
and Zudilin [6], who proved (4) below for s = 1 modulo p3 and report that Morten-
son conjectured it modulo p5.

Again after semsimplifying, the motive H(α,16 |1) has a distinguished summand
isomorphic to the Tate motive Q(−2) of rank 1 and weight 4. The complement of
this Q(−2) breaks up into two pieces A and B. They are both rank 2 motives of
weight 5. Namely, A = M( f6) is the motive associated to the unique normalized
eigenform f6 = ∑n≥1 an qn of level 8 and weight 6 and B = M( f4)(−1) is a Tate
twist of the motive associated to the unique normalized eigenform f4 = ∑n≥1 bn qn

of level 8 and weight 4. (We used the LMFDB [4] for data on modular forms.)
The trace of Frobp on the full rank 5 motive H(α,16 |1) is given by

ap +bp p+ p2.

Numerically, we observe the following supercongruences

Fs(α,1d |1)
Fs−1(α,1d |1)

≡ γp mod p5s, p - 2ap, s≥ 1, (4)

where γp ∈ Zp is the root of T 2−apT + p5 not divisible by p.
The Hodge numbers for A and B are (1,0,0,0,0,1) and (1,0,0,1) respectively,

with the gap of five in the Hodge numbers for A nicely matching the exponent of the
supercongruences.

4 A summarizing conjecture

We now state a conjecture that generalizes the situations discussed so far.

Conjecture 1 For fixed τ = ±1, let A be the unique submotive of H(α,1d |τ) with
h0,d−1(A) = 1 and let r the smallest positive integer such that hr,d−1−r(A) = 1. For
p - m such that F1(α,1d |τ) ∈ Z×p , let γp be the unit root of A. Then

Fs(α,1d |τ)
Fs−1(α,1d |τ)

≡ γp mod prs, s≥ 1. (5)

In particular, for s = 1 we have
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F1(α,1d |τ)≡ ap mod pr, (6)

where ap is the trace of Frobp acting on A.

i) For generic α,τ we expect r = 1 and (5) follows (see (2) and the subsequent
paragraph). For the conjecture to predict r > 1, the motive has to split appropriately.

ii) For α = (1/2, . . . ,1/2) and τ = (−1)d the motive H(α,1d |τ) acquires an
involution and we expect r = 2 for any d ≥ 7; all numerical evidence is consistent
with this assertion.

iii) For large d the unit roots involved are not in general related to classical mod-
ular forms since the motives A will typically have degrees greater than two.
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