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An ABC construction of number fields

David P. Roberts

Abstract. We describe a general three step method for constructing num-
ber fields with Lie-type Galois groups and discriminants factoring into powers

of specified primes. The first step involves extremal solutions of the matrix

equation ABC = I. The second step involves extremal polynomial solutions
of the equation A(x) + B(x) + C(x) = 0. The third step involves integer solu-

tions of the generalized Fermat equation axp + byq + czr = 0. We concentrate

here on details associated to the third step and give examples where the field
discriminants have the form ±2a3b.
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1. Introduction

Let S be a finite set of primes and let G be a finite group. Let NF (S, G)
be the set of Galois number fields K ⊂ C with Gal(K/Q) ∼= G and discriminant
divisible only by primes in S. The sets NF (S, G) are finite, by a classical theorem
of Hermite.

We are interested in the following inverse Galois problem. For given S and G,
find defining polynomials f(x) ∈ Q[x] for as many fields in NF (S, G) as possible.
This problem is most interesting when |NF (S, G)| can be expected to be small, so
that one can reasonably aim for complete lists. Thus we are interested in “collecting
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2 DAVID P. ROBERTS

number fields,” the most valuable specimens being those which are least ramified,
for a given Galois group G.

In this paper we consider only cases with S = {2, 3}. If G has a faithful
permutation representation of degree ≤ 7, we have completely identified NF (S, G)
previously with Jones [JR1], [JR3]. Here we supplement these complete lists with
lists of fields with larger groups G, involving the simple groups PSL2(9), SL2(8),
SL3(3), SU3(3), A8, W (E6)′, A9, W (E7)′, and A32.

We construct all our fields by specializing three point covers. Our requirement
that the field discriminant be of the form ±2a3b is extremely restrictive. In the
main, it restricts consideration to three point covers with bad reduction at 2 and
3 only. To keep ramification within {2, 3}, the specialization point has to be cho-
sen judiciously as well. Throughout, our computations are done in Mathematica,
supplemented by the nfdisc, factorpadic, polredabs, and nfisisom commands of Pari.

Our title refers to the three step procedure we go through in order to produce
our final polynomials f(x). Each step centers on an ABC-equation, these equations
being (1.1), (1.4), and (1.5).

First, the general ABC construction makes use of Katz’s theory of rigid local
systems [Kat]. This theory associates a rigid local system to a rigid solution of the
matrix equation

(1.1) ABC = 1.

There are motivic aspects to Katz’s theory which arise when one works with char-
acteristic zero coefficients, as we will briefly discuss at the end of this introduction.
But for the ABC construction itself, we take A, B, C in some GLn(F̄`). Rigid
means that the group M̃ generated by A, B and C acts irreducibly on F̄n

` and
that the centralizer dimensions of A, B, and C sum to the largest possible number
compatible with irreducibility, namely n2 +2. Katz’s theory says that if the primes
dividing the orders of A, B, and C are all in S, and also the coefficient charac-
teristic ` is in S, then the associated local system is guaranteed to have its bad
reduction entirely in S too. So the role of this first step is to point us to three point
covers guaranteed to be ramified within S. The hypergeometric family of solutions
to (1.1) given in (1.6)-(1.8) suffices to cover all our examples in this paper, and so
we will not be making much explicit reference to this first step.

Second, the three point covers we present in Sections 5-12 are mostly of the
form F : P1

x → P1
t . Here the subscripts distinguish different copies of the projective

line by the coordinate we are using. So P1
x has function field Q(x) while P1

t has
function field Q(t). We give F by an equation t = −A(x)/C(x) with A(x) ∈ Z[x]
of degree N and C(x) ∈ Z[x] of degree ≤ N . If we write

(1.2) f(t, x) = A(x) + tC(x)

then the discriminant with respect to x has the form

(1.3) D(t) = ±2A3Bte0(t− 1)e1 .

The simple way that t appears here reflects the fact that F ramifies only over 0, 1,
and ∞, i.e. F is a three point cover. The form of the numerical coefficient reflects
the fact that the bad reduction set of the cover is exactly {2, 3}. These covers are
calculated from extremal relatively prime solutions to the polynomial equation

(1.4) A(x) + B(x) + C(x) = 0.
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Here extremal means that the total number of roots of A(x), B(x), and C(x) in P1
x,

not counting multiplicities, is as small as possible, namely N + 2. In contrast, the
total number of roots, counting multiplicities, is 3N . The nature of the multiplicities
is determined in a group-theoretic way from the given solution to (1.1). If the group
generated by A, B, C is M̃ with center Z, the cover we seek has monodromy group
M = M̃/Z. Here we are modding out by centers because the essence of the situation
is maintained in a computationally simpler context: once one has a cover X = P1

x

corresponding to M , it is typically easy to take the appropriate abelian cover X̃ of
X corresponding to M̃ . For roughly half of our examples, the instance of (1.4) we
need to solve has already been solved in the literature. For the other half, we find
the solution by standard techniques. So we will not say too much more about this
second step either.

Third, we specialize the three point covers. We view (1.2) as a family of sepa-
rable polynomials f(τ, x) ∈ Q[x] indexed by τ ∈ Q−{0, 1}. Let Kτ be the splitting
field of f(τ, x) in C. To keep the discriminant of Kτ divisible by 2 and 3 only, we
consider the generalized Fermat equation

(1.5) axp + byq + czr = 0.

Here p, q, and r are given positive integers, giving the order of local monodromy
about the cusps 0, 1, and ∞ respectively in (1.2). We look for integer solutions of
(1.5) with relatively prime terms and with a, b, and c divisible by 2 and 3 only.
From each solution, we take τ = −axp/czr as our specialization point. It is this
third step, and various issues associated with it, that we will concentrate on in this
paper. It is the most purely number-theoretical of the three steps.

Of course, there are very substantial differences between the three steps, despite
the formal similarity between the central ABC equations. Of the three equations,
the matrix equation (1.1) has the most powerful theory associated to it. There
is a hypergeometric family of solutions, treated in depth in [BH]. There are also
infinitely many other non-classical but similar families, introduced in [Kat] and
discussed further in [Rob2]. The hypergeometric family of solutions goes as follows.
Let u(x) and w(x) be relatively prime degree n polynomials in F̄`[x] with non-zero
constant terms. Put

A = mu(1.6)
B = m−1

u mw(1.7)
C = m−1

w ,(1.8)

where mp indicates the companion matrix of p, as illustrated by (8.1). Then
(A,B,C) is a rigid solution of (1.1), as one has irreducibility and A, B, and C
have centralizer dimension dimension n, n2 − 2n + 2, and n respectively. More
precisely with respect to B, one has

det(B) = det(A)−1 det(C)−1 = u(0)−1w(0).

If det(B) 6= 1, then B is conjugate to a diagonal matrix with diagonal entries 1,
. . . , 1, det(B). If det(B) = 1, then B is conjugate to a matrix with diagonal entries
1, the 1-2 entry also 1, and all other entries zero.

From a practical point of view, the polynomial equation (1.4) is the most prob-
lematic. We have formulated things so far in terms of F : P1

x → P1
t , but the general

situation is F : X → P1
t with X a curve of arbitrary genus. In fact, consider a rigid
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solution (A,B,C) to (1.1) generating M̃ ⊂ GLn(F̄`) with center Z. Choose a faith-
ful transitive permutation representation of M = M̃/Z into some symmetric group
SN . Then A, B, and C each determine a partition of N . Write the total number
of parts as N + 2 − 2g. Then g is a nonnegative integer. The general polynomial
ABC equation then takes place in the function field Q(X) of an unspecified curve
of genus g, as one looks for three divisors of degree N , supported at altogether
N +2− 2g points, and a function F ∈ Q(X), with the three divisors being the zero
locus of F , the zero locus of F − 1, and the polar locus of F . This positive genus
case, in other words the great mass of the cases, presents computational problems
which at present are usually insurmountable.

While we do not apply any theory to the integer equation (1.5), from our point
of view it presents no problem at all. We simply carry out a computer search to
find some solutions of the sort we need. Finding all the solutions, and proving
that there are no more, are entirely other issues, both wrapped up with the ABC
conjecture.

Section 2 provides an overview of the fields constructed in this paper. Our main
theorem is stated there; it says how many fields in NF ({2, 3}, G) we construct in
this paper for the various G we consider. Sections 3 and 4 discuss three point covers
and especially specialization. Sections 5-12 discuss the individual constructions,
sorted approximately by |G|. In each case, we describe in some detail what happens
in the specialization step, i.e. Step 3 of the ABC construction. Each of these sections
also discusses a more theoretical issue, as indicated by the section titles.

As stated above, we will be saying very little about Steps 1 and 2 of the ABC
construction. As to Step 1, our covers 6, 9a, 10a, 13a, 13b, 27a, 27b, 27c, Nm, and
28b all come directly from a hypergeometric solution to (1.1). We will just write
down a (u(x), w(x)) giving this connection via (1.6)-(1.8); there are sometimes quite
different pairs (u(x), w(x)) which would also work. Our covers 10b, 9b, 26c, 28a,
and 27d come indirectly from a hypergeometric solution to (1.1), via a base change.
We display equations indicating how these base changes go, and describe in §8 the
case of 28a in more detail as an example, the other cases being similar. Some of
our covers also come from non-hypergeometric solutions to (1.1), but we will not
enter into these connections at all, save for some comments on 27d. The coefficient
characteristic is ` = 3 in Sections 5, 7, 8 and we use F9 = F3[i] with i2 = −1, taking
ρ = 1 + i as our standard generator of F×9 . The coefficient characteristic is ` = 2
in Section 6 and we use models of F8 and F64 introduced there. In Sections 9-12
the coefficient characteristic can be generally taken to be either ` = 2 or ` = 3, as
A, B, and C defined by (1.6)-(1.8) generate a finite group even when one takes Q
as the coefficient field. This finiteness even in characteristic zero is a very unusual
situation, and in this sense Sections 5-8 represent the general case better than
Sections 9-12 do. As to Step 2, we will limit ourselves to a brief general discussion
in §5, and a few comments about the new covers.

Throughout this paper, we work as much as possible in the setting of algebraic
number theory. However the reader should realize that a systematic study of the
sets NF (S, G) would fundamentally involve both the theory of motives and the
theory of automorphic representations. Our ABC construction is on the motivic
side, as Katz’s theory from which we begin is motivic in nature, as mentioned
before. In fact, via rigid characteristic zero solutions to (1.1), all our f(t, x) can be
thought of as generalizations of classical division polynomials fm(t, x) associated
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to the m-torsion points of the elliptic curve

y2 = (t− 1)x3 − 3tx + 2t

with J-invariant 1728t. A great advance would be to bypass the computational
techniques from general three point covers and somehow use the motivic theory to
directly calculate f(t, x), just as the classical division polynomials fm(t, x) can be
calculated for all m by explicit recursion relations [McK].

On the automorphic side, when G is solvable, the sets NF (S, G) are in principle
accessible by abelian class field theory. For groups embeddable into some GL2(F̄`),
Serre’s conjecture applies [Ser2]. Extending Serre’s conjecture, Ash and Gross both
have conjectural Langlands-type non-abelian class field theory for quite general
groups [Ash], [Gro]. Gross’s theory predicts in particular that for a given prime p,
NF ({p}, G) is non-empty for suitable non-solvable G. For example, it is predicted
that NF ({5}, G2(5)) is non-empty. The fields we produce in this paper seem good
candidates for comparison with automorphic forms.

2. Summary of fields constructed

To keep our investigation of manageable size, we focus attention on groups G
of the form H.A, where H is non-abelian simple and the natural map A → Out(H)
is injective. In passing, however, we construct interesting fields for G not in this
class. For example, in Sections 5-9, some interesting solvable fields appear. Also,
in Section 6 some G involving two copies of SL2(8) appear, and many other such
Hn.A could be constructed just by specializing at non-rational points τ . Also,
related to the distinction between M̃ and M , many of our covers have natural lifts;
for example, Cover 27d in Section 9 with Galois group W (E6) has a natural lift to
a cover with Galois group 2.W (E6).

Table 2.1 lists some groups G of the form H.A. Groups G are placed in the
same block iff they have the same H. We give a characteristic 0 description, a
characteristic 2 description, and/or a characteristic 3 description. The Atlas [Atlas]
sometimes gives even more descriptions, e.g. SL3(2).2 ∼= PGL2(7). The column N
gives the degree of a minimal faithful permutation representation.

An entry under #G of the form •x summarizes results from [JR1] and [JR3]. In
this case, |NF ({2, 3}, G)| = x. The complete search for GL3(2)/A7/S7 fields took
thirteen hours, but we estimate an analogous complete search for GL3(2).2/A8/S8

fields would take somewhere around ten thousand years [JR2]. This is why we are
shifting attention to non-exhaustive but still systematic ways of constructing fields
in a given NF (S, G).

The main focus of the present paper is the following theorem.

Theorem 2.1. For G = M10, PGL2(9), PΓL2(9), SL2(8), ΣL2(8), SL3(3),
SL3(3).2, G2(2)′, G2(2), S8, PSp4(3), SO5(3), A9, S9, Sp6(2), and S32, the poly-
nomials presented in Section 5-12 give #G elements of NF ({2, 3}, G), with #G as
on Table 2.1.

In general, suppose given separable polynomials fi ∈ Q[x], which one expects
have distinct splitting fields Ki in some NF (S, G). After a variable change, one
can assume all the fi are monic polynomials in Z[x]. To prove that the Ki are in
NF (S, G) and distinct one has to do three things:

1. Verify that the ramification set Si of Ki is really in S. Let Li = Q[x]/fi(x).
Let Di be the polynomial discriminant fi and let di be the field discriminant of Li.
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Table 2.1. Lower bounds for |NF ({2, 3}, G)|.

|G| 0 2 3 N #G §
60 = 223 5 A5 SL2(4) 5 •0

120 = 233 5 S5 ΣL2(4) 5 •5
168 = 233 7 SL3(2) 7 •0
336 = 243 7 SL3(2).2 8
360 = 23325 A6 Sp4(2)′ PSL2(9) 6 •4
720 = 24325 S6 Sp4(2) PGO−

4 (3) 6 •27
720 = 24325 PGL2(9) 10 4 5
720 = 24325 M10 10 15 5

1, 440 = 25325 PΓL2(9) 10 79 5
504 = 26327 SL2(8) 9 3 6

1, 512 = 26337 ΣL2(8) 9 64 6
2, 520 = 23325 7 A7 7 •0
5, 040 = 24325 7 S7 7 •10
5, 616 = 243313 SL3(3) 13 6 7

11, 232 = 253313 SL3(3).2 26 85 7
6, 048 = 25337 G2(2)′ SU3(3) 28 1 8

12, 096 = 26337 G2(2) SU3(3).2 28 41 8
20, 160 = 26325 7 A8 GL4(2) 8
40, 320 = 27325 7 S8 SO+

6 (2) 8 2 11, 12
25, 920 = 26345 W (E6)′ SU4(2) PSp4(3) 27 21 9
51, 840 = 27345 W (E6) SO−

6 (2) SO5(3) 27 124 9
181, 440 = 26345 7 A9 9 10 10
362, 880 = 27345 7 S9 9 26 10, 12

1, 451, 520 = 29345 7 W (E7)′ Sp6(2) 28 34 11
2.63×1035 ≈ 32! S32 32 1 12

One has to show that the p 6∈ S dividing Di do not divide di. This may require
substantial computation in general, but in the setting of three point covers we do
it uniformly without computation by (3.4).

2. Verify that the Galois group Gi := Gal(Ki/Q) is indeed isomorphic to G.
One can very easily compute lower bounds by means of Frobenius elements; we
briefly indicate how this goes in Section 5, and then give no more details. On a
heuristic level, one can expect that the lower bound obtained after moderate com-
putation is always exact. On a rigorous level, to get upper bounds may require
very substantial computation, like those we carry out for related purposes in Sec-
tions 9 and 11. In the setting of three point covers, we get the needed upper bounds
uniformly without computation from (3.2).

3. Verify that the Ki are distinct. Often the group G has up to isomorphism
exactly one faithful permutation representation of a given degree N , and all given
defining polynomials fi have degree N . In this case, for each pair i 6= i′ one needs
to find a prime p, not dividing DiDi′ , for which the factorization partitions of fi

and fi′ over Fp are distinct. In general the situation may be very slightly more
complicated, for example by sextic twinning in Section 5 and projective twinning
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in Section 7. But even here, one needs to just find p such that the factorization
partitions come from elements of different orders in the symmetric group SN . We
have done this, but do not present any details here.

In the rest of the paper we complete the statement of Theorem 2.1 by presenting
the defining equations. The proof of Theorem 2.1 is completed simultaneously,
since, as we have just explained, the theorem is essentially self-proving from its full
statement. Of course, it would be pointless to restrict ourselves only to establishing
those facts literally contributing to Theorem 2.1. Rather, we present a fuller picture
of both our particular examples and the general technique of constructing fields in
a given NF (S, G) by means of specializing three point covers.

Jones has run modest computer searches which have found an A8 field and
some more S8 fields ramified at 2 and 3 only. From looking at mod ` Galois repre-
sentations of various curves, we know also that there are more fields for PGL2(9),
SL2(8), SU3(3).2 and SO5(3) than listed here.

In [JR1], we analyzed the local behavior at 2 and 3 of low degree fields in
complete detail. In particular, all 5 + 4 + 27 fields on the top lines of Table 2.1
are wildly ramified at both 2 and 3, mostly very wildly ramified, as explained in
Section 3.3 there. Similarly, all 10 S7 fields are wildly ramified at both 2 and 3,
as explained in [JR3]. In contrast, four of the fields here are wildly ramified at
only one of these two primes; see (5.1), (6.1), (6.2) and (9.5). One can’t have tame
ramification at both primes, as a Galois field K with discriminant ±2a3b and tame
ramification only has root discriminant < 6. Odlyzko’s bounds [Odl], even the
unconditional ones, then force K = Q or K = Q(

√
−3).

3. Three point covers and specialization

Let F be a field and work with smooth projective curves over the fixed projec-
tive line P1

F = Spec(F [t]) ∪ {∞}. A three point cover over F is a finite separable
cover X → P1

F , ramified only above the three points 0, 1, and ∞. A defining poly-
nomial for X is a polynomial f(t, x) with F (X) = F (t)[x]/f(t, x). An important
issue extensively addressed in the literature is how one explicitly constructs defin-
ing polynomials; throughout this paper, we mainly take the defining polynomials
simply as given, and the bulk of this section is devoted to setting up notation.
Standard references for three point covers include the books [Mat], [MM], [Ser1],
[Sch], and [Völ].

We need first some notation with respect to the universal base curve. Let
T = Spec(Z[t, 1/t, 1/(t − 1)]) be the thrice-punctured projective line, so that for
any field F , T (F ) = F − {0, 1}. The topological space T (C) plays a central role.
We work with the fundamental group

π1 := π1(T (C), 1/2) = 〈γ0, γ1, γ∞|γ0γ1γ∞ = 1〉.

Here γ0 and γ1 come from the counterclockwise circle with radius 1/2 centered at
0 and 1 respectively. The group π1 is free on the two generators γ0 and γ1. The
third element γ∞ := (γ0γ1)−1 is introduced so as to treat the three cusps in the
same way.

To keep control of Galois groups even when specializing, it is convenient to
“remove from T (C) the segments (−∞, 0) − iε and (1,∞) − iε with ε a positive
infinitesimal.” What this really means is that we define T (C)cut to be the point
set T (C) = C − {0, 1} with a stronger topology. The open sets are generated by
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finite intersections and arbitrary unions from the standard ones together with the
new open set consisting of {t ∈ C : Im(t) ≥ 0} − [0, 1]. So T (C)cut, unlike T (C), is
simply connected; one can think of it as a spread out version of the base point 1/2.

A simple partition of T (Qp) into subregions plays a fundamental role in the
analysis of ramification. For τ ∈ T (Qp), write τ = −A/C with A,C ∈ Zp not both
divisible by p. Define B ∈ Zp by A + B + C = 0. Define

ord0(τ) := ordp(A)
ord1(τ) := ordp(B)

ord∞(τ) := ordp(C).

The partition is

T (Qp) = T (Qp)gen
∐( ∞∐

i=1

T (Qp)0,i

)∐( ∞∐
i=1

T (Qp)1,i

)∐( ∞∐
i=1

T (Qp)∞,i

)
.

Here ordc takes the value i exactly on T (Qp)c,i; so for c fixed and i increasing, the
T (Qp)c,i are smaller and smaller annuli, all centered at the cusp c. The generic
piece, empty for p = 2, is where all three ordc take the value 0.

For the rest of this section, a degree N three point cover X → P1
F is fixed.

A particular defining polynomial f(t, x) is fixed too. Objects ∆, a, b, c(t), and
Σ below depend on f . Otherwise the objects M , G, . . . depend only on X. We
will use this notation systematically in the sequel, with indices when discussing
particular examples. For example, once we have denoted a particular cover X27d,
automatically M27d denotes its monodromy group.

The polynomial discriminant of f(t, x), with respect to the variable x, factors
uniquely as

(3.1) D(t) = ∆ta(t− 1)bc(t)2,

with c(t) ∈ F [t] monic and prime to t(t − 1). Here ∆ ∈ F× and a and b are
integers. Let Σ be the subvariety of P1

F corresponding to the roots of c(t). Switching
to a different defining polynomial f∗(t, x) typically makes the corresponding c∗(t)
relatively prime to c(t). So the factor c(t)2 plays essentially no role in our situation;
actually c(t) is identically 1 in most of our examples.

For τ in F − {0, 1}, let Xτ = Spec(Lτ ) be the corresponding fiber. So Lτ =
F (Xτ ) is a finite separable algebra over F . For τ 6∈ Σ(F ), Lτ = F [x]/f(τ, x); so in
this case, Lτ is a field iff f(τ, x) is irreducible.

Suppose henceforth that F ⊆ C. Let X(C)cut be the inverse image of T (C)cut

in X(C). Let C be set of components of X(C)cut, i.e. C = π0(X(C)cut). So C
has N components and the group π1 acts naturally on C. The image of π1 in the
symmetric group Sym(C) is called the monodromy group M . For c ∈ {0, 1,∞},
the image of γc in M is denoted mc; its order is denoted ec.

Let Q̄ be the algebraic closure of Q in C. Suppose henceforth that F ⊆ Q̄; this
is the essential case anyway. For τ ∈ F − {0, 1}, the branch cuts let us canoni-
cally identify the fiber Xτ (C) with the component set C; we use this identification
without comment in the sequel. But also Xτ (C) is identified with the set of ho-
momorphisms Hom(Lτ , Q̄); for τ 6∈ Σ(F ), Xτ (C) is identified with the set of roots
Xτ (C) ⊂ Q̄ of f(τ, x). Either way, one sees a natural action of Gal(Q̄/F ) on
Xτ (C) = Xτ (Q̄). The image of Gal(Q̄/F ) in the symmetric group Sym(C) is the
Galois group Gτ .
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Let M∗ be the normalizer of M in the symmetric group Sym(C). A basic fact
is that

(3.2) each Gτ is contained in M∗.

Another basic fact is that all the biggest Gτ coincide, and we call this common
group the Galois group G.

Suppose now that F ⊂ Q̄ is a number field of degree d. Then one has d
conjugate covers Xδ → F δ. Restricting scalars, one gets a single cover of degree dN
over the field Q. On the level of defining polynomials, this operation of restricting
scalars is the passage from f(t, x) ∈ F [t, x] to

∏
fδ(t, x) ∈ Q[t, x]. Since our object

is to construct Galois extensions of Q, this is a natural thing for us to do; in the
rest of this section, we take F = Q.

Let Kτ be the splitting field in C of Lτ . So if τ 6∈ Σ(Q), Kτ is the field generated
by the roots of f(τ, x) in C. The fields Kτ are the fields which we emphasized
in Sections 1 and 2; we have set things up so that Gτ = Gal(Kτ/Q). On the
other hand, for most of this paper we focus on the degree N algebras Lτ which
arise naturally and are computationally more accessible. Thus, for example, we
sometimes give the algebra discriminant of Lτ , as computed by nfdisc. Determining
the discriminant of Kτ would be much harder.

Let S be the set of primes at which the cover X → P1
Q has bad reduction.

Always S contains all primes dividing e0e1e∞. Always S is contained in the primes
dividing numerator or denominator of ∆. By adjusting the defining equation, one
can always make S exactly the primes dividing numerator or denominator of ∆.

A basic fact is that all the fields Kτ are tamely ramified outside S. To be more
precise, recall that for a Galois number field K ⊂ C, tamely ramified at p, one has
a conjugacy class rp in Gal(K/Q), measuring the ramification at p. In our case,
for p 6∈ S, one has an explicit formula for the ramification class rτ,p as a conjugacy
class in G ⊇ Gτ :

(3.3) rτ,p =
{

[1] if τ ∈ T (Qp)gen

[mi
c] if τ ∈ T (Qp)c,i.

Thus Lτ is unramified at p iff τ ∈ T (Qp)gen or τ ∈ T (Qp)c,i with mi
c = 1. Also

(3.4) if τ ∈ T (Qp)c,i then ordp(disc(Lτ )) = N − |C/mi
c|,

the last term being the number of orbits of mi
c on the component set C.

4. Specialization lists for S = {2, 3}

Let p, q, and r be positive integers or ∞. Let S be a finite set of primes. Define
Tp,q,r(ZS) to be the set of those rational numbers τ ∈ Q− {0, 1} such that

τ ∈ T (Qp)gen
∐( ∞∐

i=1

T (Qp)0,pi

)∐( ∞∐
i=1

T (Qp)1,qi

)∐( ∞∐
i=1

T (Qp)∞,ri

)
for all p not in S. Here if an index is ∞, then the corresponding cuspidal summand
is by definition empty.

Explicitly, and without reference to p-adic numbers, a rational number τ is in
Tp,q,r(ZS) iff there exist integers a, b, c, x, y, z as follows: a, b, and c are divisible
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only by primes in S;

τ = −axp

czr
;

axp + byq + czr = 0.

The six-tuple (a, b, c, x, y, z) is then uniquely determined under the following aux-
iliary normalization conditions: x, y, and z are divisible only by primes not in S;
A = axp, B = byq, and C = czr are relatively prime; x, y, and z are positive; two
of A, B, and C are positive. In short, identifying Tp,q,r(ZS) requires finding the
solutions of the generalized Fermat equation.

Table 4.2. The 56 S3-orbits of Th(Z{2,3}) needed for T2,3,∞(Z{2,3})

a·xp b·yq c·1
1 1 −2·1

2·1 1 −3·1
3·1 1 −22·1

23·1 1 −32·1
3·1 53 −27·1
−52 24·1 32·1
−52 233·1 1

52 2·1 −33·1
−72 243·1 1

72 25·1 −34·1
2·112 1 −35·1
−172 2532·1 1
−1312 56 293·1
2·54 −113 34·1
2·72 −53 33·1

112 −53 22·1
132 −2·53 34·1

22·52 −73 35·1
172 −73 2 · 33·1

−192 73 2 · 32·1
192 53 −2 · 35·1
132 73 −29·1

33·72 −113 23·1
372 −22·73 3·1

−3·232 113 28·1
352 −133 2235·1

22·232 −133 34·1
−472 133 223·1

a·x2 b·y3 c·1
−23·172 53 37·1

592 −3·113 29·1
612 3·53 −212·1

−712 173 27·1
−2332·132 233 1

112 233 −2123·1
732 233 −2337·1
1432 −3·193 27·1

23·732 −353 35·1
1072 −32·173 215·1

−2152 193 2 · 39·1
−2532 29·53 32·1
−3592 3·353 28·1

5452 −2·533 36·1
5952 −733 2437·1

−3·3892 2·613 1
−8272 733 21532·1

9552 −973 2334·1
18712 −32·733 29·1
23592 473 −25311·1
26812 −1933 2434·1

−2·27612 2393 313·1
85492 −35·673 23·1

−230532 5053 2273·1
2·213952 −9713 38·1

391512 −11533 2535·1
−3·483832 19153 213·1
−2·1842112 40793 3·1

The discussion at the end of Section 3 makes clear why we are interested in the
sets Tp,q,r(ZS). Namely, let X → P1

Q be a three point cover with bad reduction set
within S and local monodromy orders p = e0, q = e1, r = e∞. Then the specialized
fields Kτ have bad reduction within S exactly if τ ∈ Tp,q,r(ZS). This important
statement is called the Chevalley-Weil theorem for M -curves in [Dar].
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If X → P1
Q yields {p, q, r} with 1/p+1/q+1/r ≥ 1, then the monodromy group

M is solvable, except perhaps for some composition factors isomorphic to A5. Thus
we are interested here exclusively in the hyperbolic case

(4.1)
1
p

+
1
q

+
1
r

< 1.

Here the sets Tp,q,r(ZS) are known to be finite [DG], the proof appealing to Faltings’
general finiteness theorem for curves.

Table 4.3. 45 more S3-orbits in Th(Z{2,3})

a·xp b·yq c·zr

25·1 −3·53 73

232 −54 253·1
72 −54 2632·1

−292 54 2333·1
472 −74 263·1

253·52 −74 1
−1132 74 2734·1

−22·612 114 35·1
2392 −2·134 1
2872 −174 2732·1

2·58612 −32·594 79

32·53 22·193 −134

−373 2·293 3·54

−28·73 3·293 114

−713 233 2432·74

−2·2033 33·793 434

22932 2·673 −3·59

10792 −210·193 3·59

−3·365532 2033 211·59

−1387432 3·10273 213·59

2332·125152 −27973 139

1075672 −3·31553 211·79

a·x2 b·yq c·z8

−2 ·3·2632 293 58

−22·3532 34·113 58

52392 −32·1633 2·78

−25·40152 7993 78

263112 2432·953 −138

−320392 2413 2534·58

−393132 2·7673 3·118

319872 −14893 2336·58

366312 16793 −2635·58

−994312 23·10733 32·58

−1609752 2103·2033 118

−1850392 16333 2634·78

22·7745172 −156133 38·118

−68270352 2·285593 33·138

91013592 −438733 2737·78

−266155192 789133 2735·178

−300429072 2333·160373 438

2·457075192 11715373 −35·958

2·132 −3·194 58

4371472 −217693 2934·512

11692 2334·54 −116

25912 −3·434 2·116

140892 −1314 2113·56

In the application to specializing three point covers, only cases satisfying the
condition

(4.2) all primes dividing pqr are in S

arise. Accordingly, put

(4.3) Th(ZS) =
⋃

(p,q,r)

Tp,q,r(ZS)

the union being over (p, q, r) satisfying (4.1) and (4.2). Write (p, q, r)|(p′, q′, r′) iff
p|p′, q|q′, and r|r′, with the convention that (any positive integer)|∞. Then

Tp,q,r(ZS) ⊇ Tp′,q′,r′(ZS)
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if (p, q, r)|(p′, q′, r′). Thus (4.3) can be written as a finite union over (p, q, r) minimal
with respect to divisibility, and so Th(ZS) is also finite. To avoid confusion, we
should mention that it is natural in other contexts to consider a larger set TH(ZS)
by letting (p, q, r) on the right side of (4.3) run over triples satisfying (4.1) but not
necessarily (4.2). The ABC conjecture would say that each TH(ZS) is finite, but
this finiteness is not known. The group S3 = Sym({0, 1,∞}) acts naturally on the
sets Th(ZS) and TH(ZS). If 2 ∈ S, one has the three-element orbit {−1, 1/2, 2};
otherwise all orbits have six elements. A case which has received a lot of attention
recently is the case S = ∅. The corresponding set TH(Z) is known to contain ten
S3-orbits [Beu], and conjectured not to contain any more [DG], [Dar].

The set T2,3,∞(Z{2,3}) has been completely identified [Cog]; it has 81 elements
giving rise to 56 S3-orbits. We have carried out a several-day computer search for
more elements of Th(Z{2,3}), with the expectation that each τ found will be involved
in the construction of infinitely many essentially distinct number fields Kτ , via our
ABC construction. We have found 45 more orbits. Representatives of these 101
orbits are given in Table 4.2 and Table 4.3. The representatives τ on these tables
are grouped according to their corresponding {p, q, r}. Each S3-orbit is given in
terms of a solution to a generalized Fermat equation. For example, the fifth line in
the left column of Table 4.2 corresponds to 3 + 53 − 27 = 0. The members of the
corresponding S3-orbit are all possible negative quotients of the three terms, i.e.
3/27, 27/3, 53/27, 27/53, −3/53, −53/3.

Our computer search shows that Table 4.3 is complete with respect to solutions
with |axp|, |bxq|, and |czr| all ≤ 109. To get larger solutions, we permuted cusps
and applied the following base change maps iteratively.

f2 : Tm,m,n(ZS) → Tm,2,2n(ZS∪{2})
τ 7→ 4τ(1− τ)

(A,B,C) 7→ (4AB, (2A + C)2,−C2)

f3 : T2n,2,n(ZS) → T3,2,2n(ZS∪{3})

τ 7→ (4τ − 1)3

27 τ

(A,B,C) 7→ ((4A + C)3, (8A− C)2B,−27AC2)

f4 : T3n,3,n(ZS) → T3,2,3n(ZS∪{2})

τ 7→ (9τ − 1)3(1− τ)
64 τ

(A,B,C) 7→ (B(9A + C)3, (27A2 + 18AC − C2)2, 64AC3).

These maps themselves are three point covers. In fact, f3 and f4 describe how the
modular curve X0(N) covers the j-line X0(1) for N = 2, 3.

The base change operations are quite efficient. For example, not using [Cog],
but rather starting from just τ = −2 corresponding to 2 − 3 + 1 = 0, one gets 73
of the 101 orbits. Two more examples of low height solutions being transformed to
larger height solutions are

f3(35, −22612, 114) = (−156133, 227745172, 38118)(4.4)
f2(33793, −212033, 434) = (−2333160373, 300439072, −438).(4.5)
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Note that the orbits appearing in (4.4) and the right side of (4.5) are three of the 10
known orbits of TH(Z). Our list contains four more of these orbits; the remaining
three are excluded from our consideration, as they involve the exponent 7 on primes
other than 2 and 3.

In the rest of this paper, we abbreviate the part of Tp,q,r(Z{2,3}) appearing on
Tables 4.2 and 4.3 by T ∗

p,q,r. Table 4.4 gives the cardinality of T ∗
p,q,r in all cases,

under the normalization hypothesis p ≤ q ≤ r. The block on the right illustrates
that we are using the bulk of Tables 4.2 and 4.3 in Sections 5-11.

Table 4.4. Order of the specialization sets T ∗
p,q,r

Section: 5 6 7 8 9 10 11
p q r |T ∗

p,q,r| A6 SL2(8) SL3(3) SU3(3) W (E6)′ A9 W (E7)′

2 3 8 99 f10a

2 3 9 87 f9a

2 3 12 82
2 3 ≥ 16 81 f18

2 4 6 48
2 4 8 45 f26c

2 4 9 45 f27d

2 4 ≥ 12 44 f28a

2 6 ≥ 8 36
2 ≥ 8 ≥ 8 35 f10b f27abc f9,1 f28b

3 3 4 39 f6

3 3 ≥ 6 27 f13a

3 4 ≥ 6 24 f13b

3 ≥ 6 ≥ 6 23
≥ 4 ≥ 4 ≥ 4 21

5. A6, S6, PGL2(9), M10 and PΓL2(9); basics of computations

In this section, we work with the following three covers, with ρ = 1 + i ∈ F9,
as explained towards the end of §1.

u6 = (x− 1)2

w6 = (x− ρ)(x− ρ7) = x2 + ix + 1
Λ6 = (3A, 3B, 4A) → (33, 3111, 42)

f6(t, x) = (x2 − 2)3 + t(3x− 4)2

D6(t) = 21336t4(t− 1)2

u10a = (x− 1)3

w10a = (x + 1)(x− ρ)(x− ρ7) = x3 + ρx2 + ρx + 1
Λ10a = (3AB, 2D, 8A) → (3331, 22222, 811)

f10a(t, x) = (x3 + 12x2 + 60x + 96)3x + 1728t(3x2 + 28x + 108)
D10a(t) = −299342t6(t− 1)5
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us
10b = (x− 1)(x− ρ)

ws
10b = (x− ρ3)(x− ρ6)

Λs
10b = (8A, 4A, 8B) → (811, 411, 811) (genus one)

t = −(s− 1)2/4s

Λ10b = (8CD, 2BC, 8AB) → (82, 22211, 811)
f10b(t, x) = x8(x− 3)2 − 27t(3x2 − 2x + 3)

D10b(t, x) = 229342(t− 1)3t8.

The covers in the later sections will be presented in the same format. First, if
the cover comes directly from a hypergeometric solution (1.6)-(1.8) to (1.1), we
simply give such a solution by giving uN (x) and wN (x), as we have done for N = 6
and N = 10a. There are more lines if the cover comes only indirectly from a
hypergeometric solution to (1.1). In the case of 10b, the hypergeometric solution
gives a cover Xs

10b → P1
s where Xs

10b has genus one. However there is an involution
on Xs

10b over the involution s ↔ 1/s on P1
s. We mod out by these involutions to

obtain our cover X10b = P1
x → P1

t . We consistently reserve the variable t for the
base variable in the final three point cover; s and/or u enter as base variables in
intermediate three point covers. The intermediate covers, such as Xs

10b → P1
s here,

drop from consideration as the final covers, such as X10b → P1
t , specialize to give

more fields. The bulk of a given section discusses specialization, and the connection
with the matrix ABC equation (1.1) no longer plays a role; in these discussions,
only the last three lines corresponding to each cover enter.

The line beginning ΛN gives first the conjugacy class [mc] of mc in M , in Atlas
notation, for c = 0, 1, ∞. When M has non-trivial outer automorphisms, like in
cases 6 and 10a, there may be some ambiguity in how Atlas notation is used; in
case 10a, for example, we could just as well write 8B rather than 8A. The ΛN

line gives next the orbit-partition λc of mc acting on the component set C. All the
covers in this paper are rigid, meaning that they are completely determined by the
group-theoretical data ([m0]; [m1], [m∞];M ⊆ Sym(C)). The computation of the
defining equation starts from this group-theoretical information.

The component set C6 = π0(X6(C)cut) of the cover X6 → P1
Q has six elements.

The monodromy transformations m6,0, m6,1, and m6,∞ generate the alternating
group M6 = Alt(C6). The Galois group G6 is all of Sym(C6). The constant field
extension with Galois group G6/M6 is Q(

√
2), as can be seen from considering

D6(t) modulo squares. Similarly, C10a can be identified with a projective line over
F9 so that the monodromy group M10a is PGL2(9) and the Galois group G10a is
PΓL2(9); the constant field extension is again Q(

√
2), although this can no longer

be seen from D10a(t). In contrast, Cover 10b has M10b = G10b = PΓL2(9).
Except for f9a in Section 6 and the f∗N,m in Section 10, the equations for all our

covers have the simple form f(t, x) = A(x)+tC(x). In these cases, x is a coordinate
on the covering curve X, identifying it with P1

x. The cover X → P1
t is given by the

rational function x 7→ −A(x)/C(x). Define B(x) by requiring that the polynomial
ABC equation (1.4) hold, i.e. B(x) = −A(x)− C(x). Then the polynomials A(x),
B(x), and C(x) factor over Q according to λ0, λ1, and λ∞. Thus, for example,
f10a(1, x) factors as a quintic squared, according to λ10a,1 = 22222. In brief, one
determines the coefficients of A and C by imposing some normalization conditions
and demanding that B factor in the proper way. For very simple computations of
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this form see [Bir]; to make the computations feasible in our range of degrees, one
has to use the “differentiation trick” described there systematically.

We specialize the cover X6 at the 39-element set T ∗
3,3,4. The 39 algebras L6,τ

are all of degree six, thus the factor fields all appear in [JR1]. The algebra L6,τ

is the twin [Rob1] of the algebra L6,1−τ , so that their splitting fields in C are
identical: K6,τ = K6,1−τ . Since L6,1/2 is self-twin, it is forced to be a non-field;
in fact, L6,1/2 factors as a quintic field L5 times Q, with L5 the unique quintic
{2, 3}-field with Galois group the Frobenius group F5.

The 39 specialization points yield 37 isomorphism classes of algebras, the rep-
etitions being L6,22193/134 ∼= L6,22 and L6,3253/134 ∼= L6,−3. Excluding L5 ×Q and
counting the repeated fields once, one has 10 S6 twin pairs and 2 C2

3 .D4 twin pairs.
The remaining 6 twin pairs consist of a field and a non-field. Two of these have
Galois group S5, three have Galois group S4×S2, and one has Galois group S3×S3.

In [JR1], we found a rather mysterious lack of balance in the 27-element set
NF ({2, 3}, S6). Namely, if we group these fields, and also those in NF ({2, 3}, S5),
by their unique quadratic subfields Q(

√
d), the decomposition is as follows:

d : −6 −3 −2 −1 2 3 6
NF ({2, 3}, S5) 1 0 0 0 2 1 1
NF ({2, 3}, S6) 1 1 0 2 13 4 6

In each case, just under half of the fields have discriminant class d = 2. So one can
view the existence of the cover f6 as explaining this imbalance; it accounts for both
S5’s and 10 of the 13 S6’s.

Next, we specialize the cover X10a at the 99-element set T ∗
3,2,8. There is a

tight relation between the covers X6 and X10a. Namely f6(s, x), f6(1 − s, x) and
f10a(1− (2s− 1)2, x) have the same splitting field over Q(s). This accounts for the
behavior of the nineteen specialization points with 1− τ ∈ Q×2 .

Twelve of the elements τ ∈ T ∗
3,2,8 satisfy 2(1 − τ) ∈ Q×2. By the form of

D10a(t), the corresponding Gτ are in the index two subgroup M10 of PΓL2(9).
The polynomials f10a(−233, x) and f10a(−7993/78, x) each factor as f9f1. The
field K10a,−233 is one member of the two-element set NF ({2, 3}, C2

3 .C4). The field
K10a,−7313/78 has Galois group C2

3 .Q, with Q being the quaternion group. One
knows that NF ({2, 3}, Q) also has two elements, with defining equations

g±(x) = x8 ± 12x6 + 36x4 ± 36x2 + 9.

The field K− is totally real while K+ is totally imaginary; the quaternionic subfield
of K10a,−7313/78 is K+. The remaining ten fields are all distinct, with Galois group
M10, and discriminants 2a3b, 24 ≤ a ≤ 34, 10 ≤ b ≤ 18.

For eight of the remaining sixty-eight τ , the polynomial f10a(τ, x) factors as 9+
1, namely τ = −21613, −21285593/33138, −2393/313, −2125673/31118, −293/58,
2/33, 11715373/35958, and −40793/3. The splitting fields K10a,τ all have Galois
group of the form C2

3 .B, with B the Sylow 2 subgroup of GL2(3); these eight
fields are all distinct. The remaining sixty specialization points give 59 fields in
NF ({2, 3}, PΓL2(9)), the unique duplication being K10a,156133/38118 = K10a,53/22 ,
verified by polredabs. Note that none of the 59 algebras L10a,τ are tame at 2,
because all of them have Q(

√
2) in their splitting field. However exactly one is

tame at 3, namely

(5.1) L10a,113/23 : x10 − 4x9 + 6x8 + 24x2 + 32x + 16,
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with discriminant −23439. Note that f(113/23, x) has relatively large coefficients.
The displayed polynomial is obtained from f(113/23, x) by polredabs. We have
used polredabs analogously below, so as to always display only polynomials with
relatively small coefficients.

Next, we specialize X10b at the 35-element set T ∗
8,2,8 = T ∗

∞,2,∞. The polyno-
mial f10b(35, x) factors into an irreducible nonic and a linear, the nonic defining the
same nonic field as the nonic factor of f10a(−233, x). Otherwise the Galois fields
produced from X10b are distinct from those produced from X10a. The polynomial
f10b(2/33, x) also factors in the form 9 + 1; it has splitting field of degree 72 and is
tame at 3. The remaining 33 elements of T ∗

8,2,8 give irreducible degree 10 polynomi-
als. The polynomial f10b(4, x) has splitting field the unique field in NF ({2, 3}, S5)
containing Q(

√
6). The remaining thirty-two specialization points give thirty-two

distinct fields containing A6 in their Galois group, one with Galois group A6, four
with Galois group PGL2(9), five with Galois group M10, two with Galois group
S6, and twenty with Galois group PΓL2(9). The four with Galois group PGL2(9)
come from τ = −8, −288, −1, and 2. Their corresponding field discriminants are
−233310, −233316, −226312, and 233312.

As we discussed in §2, we carried out many computations with Frobenius ele-
ments to distinguish fields and get lower bounds on Galois groups. Here are some
group-theoretical details for the situation of this section Let G\ be the set of conju-
gacy classes in G = PΓL2(9). For every N ∈ {10a, 10b}, p ≥ 5 and τ ∈ Fp−{0, 1},
one has a Frobenius element FrN,τ,p in G\. As an element of the quotient group
C2 × C2, it is given by a pair of Jacobi symbols:

[Fr10a,τ,p] =
((

2
p

)
,

(
−2(τ − 1)

p

))
(5.2)

[Fr10b,τ,p] =
((

2τ(τ − 1)
p

)
,

(
2(τ − 1)

p

))
.(5.3)

The Frobenius class FrN,τ,p itself is then completely determined by the factorization
pattern λN,τ,p of fN (τ, x) in Qp. The possibilities are

A6 = PSL2(9) = M ′
10 S6 −A6 PGL2(9)−PSL2(9) M10 −M ′

10

[FrN,τ,p] (1, 1) (−1,−1) (1,−1) (−1, 1)
Atlas 1A 2A 3AB 4A 5AB 2BC 4B 6AB 2D 8AB 10AB 4C 8CD

# 1 45 80 90 144 30 90 240 36 180 144 180 180
λN,τ,p 110 2412 331 4212 52 2314 422 631 25 812 10 4212 82

The line # gives the number of elements of PΓL2(9) belonging to each conjugacy
class. We do not use this information to distinguish fields and get lower bounds
on Galois groups. However this information is very orienting as one carries out
Frobenius computations, because a field with Galois group H has its Frobenius
elements distributed in H\ in proportion to the analogous numbers, here tabulated
for H = PΓL2(9).

6. SL2(8) and ΣL2(8); Shimura curves

Here we specialize two covers. For the first, we work with F8 = F2[a]/(a3+a+1).
For the second, we work with F64 = F2[b]/(b6 + b3 + 1). The field element a
has multiplicative order 7, while b has multiplicative order 9. We regard F64 as
containing F8 via a = b + b8.
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The first cover is

u9a = x2 + x + 1
w9a = x2 + ax + 1
Λ9a = (333, 22221, 9)

f9a(t, x) = (x3 − 9x2 − 69x− 123)3 −
214t(9x4 − 42x3 − 675x2 − 1485x− 441)− 228t2

D9a(t) = 2140318t6(t− 1)4 ·
(4398046511104t3 − 5421322469376t2 − 7496810496t + 513922401)2.

The defining polynomial f9a was sent to us by Elkies in 1995. This cover has genus
one. This is the reason behind the extraneous cubic-squared factor in D9a(t), an
example of a non-trivial c(t)2 in (3.1). All the other covers in this paper, besides
a few that we see briefly while carrying out a construction involving base change,
have genus zero.

The construction of the second cover involves two base changes, the first a
degree three base change P1

s → P1
u, and the second a degree two base change

P1
u → P1

t .

us
9b = (x− b)(x− b6)

ws
9b = (x− b4)(x− b6)

Λs
9b = (9A, 9B, 9C) → (9, 9, 9) (genus 4)
u = (s− 2)(s + 1)(2s− 1)/3(s− 1)s

Λu
9b = (3B, 3B, 9ABC) → (33111, 33111, 9) at u =

√
−3,−

√
−3,∞

f9b(u, x) = A(x) + u21334

A(x) = x9 + 108x7 + 216x6 + 4374x5 +
13608x4 + 99468x3 + 215784x2 + 998001x + 810648

D9b(u) = 2104350(u2 + 3)4

t = −u2/3
Λ18 = (29, 34 16, 18)

f18(t, x) = f9b(u, x)f9b(−u, x)
= A(x)2 + 22639t

D18(t) = −24603189t9(t− 1)8.

The formula f9b(u, x) for Cover 9b is from [Mat, page 193]. The monodromy and
Galois group of this cover are both ΣL2(8) = SL2(8).3. Matzat’s three point cover
does not fit into our set-up because the ramification locus is u =

√
−3, −

√
−3,

∞. Our second base change is to place the ramification points at our standard
locations, t = 0, 1, ∞. To do this without introducing irrationalities, we double the
degree of the cover. The Galois group becomes G18 = ΣL2(8)2.2. The monodromy
group is the unique index three normal subgroup. The constant field extension,
with Galois group G18/M18, is Q(cos(2π/9)), with defining polynomial x3−3x+1;
this is the unique field in NF ({2, 3}, A3).

We specialize f9a at the 87-element set T ∗
3,2,9. The polynomial f9a(−173/27, x)

factors as f8f1, the degree eight factor having Galois group A4 × C2. The poly-
nomials f9a(−2532, x) and f9a(32173/215, x) define the same field, with defining
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equation x9 + 6x3 − 2 and Galois group the 54-element affine group (Z/9).(Z/9)×.
The remaining 84 specialization points give 55 fields, all with Galois group ΣL2(8).
All these fields are wildly ramified at three. Exactly two of them are only tamely
ramified at 2:

L9a,τ : x9 − 36x6 − 162x4 − 54x3 − 972x2 + 486x− 594(6.1)

L9a,4/3 : x9 − 18x3 + 27x− 6.(6.2)

The first field arises from five specialization points, namely τ = 25/34, −5053/2273,
210193/593, −2953/32, and−733/21532. The field discriminants are 28326 and 26326,
respectively.

We specialize f18 at the 81-element set T ∗
2,3,18 = T ∗

2,3,∞. When −3τ is not a
square in Q, we get fields which generically have Galois group containing two copies
of SL2(8), thus interesting, but out of our self-imposed context. The six elements
τ with −3τ a square are τ = −u2/3 with u ∈ {1, 10/9, 35/18, 3, 595/108, 37}. The
twelve algebras L9b,±u are all fields, and so is L9b,0; they are all pairwise non-
isomorphic. Exactly one of these fields appeared already as a specialization of
f9a, namely L9b,−5·7/2·32 which coincides with the tame-at-two field L9a,4/3. Of
the twelve remaining fields, nine have Galois group ΣL2(8), and three have Galois
group SL2(8), these being

L9b,−3 : x9 − 12x6 − 18x5 + 36x2 − 27x− 128

L9b,37 : x9 − 36x6 − 54x5 − 324x4 − 216x3 − 972x2 − 243x− 2124

L9b,1 : x9 − 36x6 − 54x5 + 432x3 + 324x2 − 243x− 1152.

These fields have discriminants 214322, 214326, and 214326, respectively.
In comparison with the other examples in this paper, the most remarkable

phenomenon here is that often two or more L9a,τ are isomorphic. This phenomenon
can be partially explained as follows. The cuspidal data identifies the base P1 with a
minimal-area Shimura curve X0(1) associated to the cubic field Q(cos(2π/9)) and no
ramification at finite places. The cover X9a → P1 is identified with X0(2) → X0(1),
the ideal (2) having residual cardinality 8. But now, one has also a degree four cover
π : X0(P ) → X0(1), where P is the unique prime above 3. The curve X0(P ) has an
Atkin-Lehner-type involution WP , and hence a second natural map π ◦WP to the
base curve X0(1). As in the classical case, one can think of X0(P ) ⊂ X0(1)×X0(1)
as being a correspondence TP from X0(1) to X0(1) of bidegree (4, 4). In terms of
our fixed coordinate t on X0(1), and the same coordinate s on the second copy of
X0(1), the defining equation for X0(P ) is unique up to scalars:

hP (s, t) =
212st

(
−31017366383 + 213381054805(s + t) + 22735211(s2 + t2)+

213362486119st− 2213322267(s2t + st2)− 22455s2t2 + 230(s3t2 + s2t3)
)

−36(−32173 + 215s)3 − 36(−32173 + 215t)3 − 312179.

The specialization points giving isomorphic algebras are exactly as follows. Here
σ ≈ τ , rather than just σ ∼ τ , indicates that hP (σ, τ) = 0; so these isomorphisms
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L9a,σ
∼= L9a,τ are explained by the Hecke correspondence TP .

−1 ∼ 27973/139

5373/35 ∼ −40793/3
32 ∼ 53/33

35 ∼ −233

−2532 ∼ 32173/215

−1/23 ∼ 35673/23

−24/32 ∼ 2273/3 ≈ 233/2123
23/32 ∼ −133/223 ≈ −56/293
−233 ∼ 1/22 ≈ 31113/29

−3 ∼ 53/27 ≈ 31193/27

25/34 ∼ −5053/2273 ≈ 210193/593 ∼ −2953/32 ≈ −733/21532

−23 ∼ −32/24 ∼ 53/22 ≈ 73/29 ≈ 32733/29

3/22 ∼ −113/28 ≈ −3533/28 ∼ −2033/21159 ≈ 315533/21179

−243 ∼ 22 ≈ 3153/212 ∼ −19153/213 ≈ −3110273/21359

The Hecke correspondence TP also explains two of the three cases mentioned
above of unexpectedly small Galois group. First, the degree seven polynomial
hP (t, t) factors as f2

3 f1, the root of the linear factor being τ = −173/27. So this
τ is a CM point, which forces L9a,τ to be non-generic. Second, the degree three
polynomial hP (0, t) factors as f3

1 , the root of the linear factor being τ = 32173/215.
So this τ , like 0, is also a CM point, again forcing non-genericity in L9a,τ .

The cover X10a from the previous section is also a minimal area Shimura curve,
coming from the field Q(

√
2). For more on Shimura curves as covers of the projective

line, see [Tak], [Elk].

7. SL3(3) and SL3(3).2; projective twinning

Here we use two new covers 13a, 13b, and a cover 26c, which is a doubled
version of one of the covers in [Mal1]. The new covers are

u13a = (x− 1)3

w13a = (x− ρ)(x− ρ3)(x + 1) = x3 + 2x2 + 2
Λ13a = (3B, 3A, 8A) → (33331, 3331111, 841)

f13a(t, x) = (x3 − 6x + 6
√
−2x− 4− 8

√
−2)3(x− 2−

√
−2)3(x− 2 + 2

√
−2)−

t2232(3x− 4 +
√
−2)4(3x− 8 +

√
−2)

D13a(t) = 2112354(1−
√
−2)72t8(t− 1)6

u13b = (x− 1)(x2 + 1)
w13b = w13a

Λ13b = (4A, 3A, 8A) → (44221, 3331111, 841)

f13b(t, x) = (x2 − 3
√
−2x− 3

√
−2− 3)4(x2 + 6

√
−2− 3)2(x + 3− 3

√
−2) +

t2233(1 +
√
−2)8(x + 1−

√
−2)4(3x + 5−

√
−2)

D13b(t) = 292372(1 +
√
−2)96t8(t− 1)6.

These covers were first computed over F11, where each cover appeared with its
projective twin, as described below; at this level, there is no evident relation between
the equation for a cover (

√
−2 7→ 3 ∈ F11) and the equation for its twin (

√
−2 7→

8 ∈ F11). We worked with the auxiliary prime 11 because it is the smallest prime
besides 3 which is split in the field Q(

√
−2). We then lifted via the 11-adics to

solutions in Q(
√
−2) as explained in [Mal2]. At this level, passing from a cover to

its twin is induced by complex conjugation in the ground field Q(
√
−2).
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The third cover is

uu
13c = (x− ρ5)(x− ρ7)(x− 1) = x3 + x2 + 1

wu
13c = w13a

Λu
13c = (8A, 8B, 2A) → (841, 841, 222211111) at u = −

√
−8,

√
−8,∞

f13c(u, x) = A(x)− uB(x)
A(x) = (x3 − 12x2 − 6x− 64)(x4 + 16x3 − 36x2 + 128x− 28) ·

(x6 + 12x5 + 54x4 + 176x3 + 444x2 + 624x + 552)
B(x) = (x4 + 16x3 + 72x2 + 128x + 188)(3x4 − 4x3 + 12x2 − 24x− 68)2

D13c(u) = 21603114(u2 + 8)10

t = −u2/8
Λ26c = (2B, 8AB, 4B) → (213, 82 42 12, 44 25)

f26c(t, x) = f13a(u, x)f13a(−u, x)
= A(x)2 + 8tB(x)2

D26c(t) = −27773452t13(t− 1)20.

One has M13c = G13c = SL3(3). Just as we doubled the Matzat cover in the
previous section, we double the Malle cover to place the critical values at our
standard positions 0, 1, and ∞ and remove irrationalities. In distinction to what
happened when we doubled the Matzat cover, here the groups do not become much
bigger: M26c = G26c = SL3(3).2.

To facilitate comparison with f26c, we consider the degree 26 polynomials
f26a = f13af̄13a and f26b = f13bf̄13b in Q[t, x]. We specialize f26a at the 27-
element set T ∗

3,3,8 and f26b at the 24-element set T ∗
4,3,8. The polynomials f26a(−8, x),

f26b(4, x), f26b(3/4, x) each factor, and the corresponding splitting fields have Ga-
lois group 31+2

+ .D4, 31+2
+ .V , and 31+2

+ .C2 respectively. A Frobenius computation
shows that the remaining 48 polynomials have Galois group all of SL3(3).2. The
Frobenius computation shows that these fields are all non-isomorphic except for
perhaps L26b,1/4 and L26b,−8. We have verified that this last pair of fields is indeed
isomorphic. We used the method described in Section 9, working only with the
roots of f13b,1/4 and f13b,−8.

Now consider Cover 26c. In general, if −2τ is not a square in Q, then L26c,τ

contains a subfield isomorphic to Q(
√
−2τ). If −2τ is a square, then one has the

factorization f26c(τ, x) = f13c(u, x)f13c(−u, x), with u2 = −8τ . Thirty-eight of
the elements in the 45-element set T ∗

2,8,4 are such that −2τ is a non-square. A
Frobenius computation shows that all of these have Galois group all of SL3(3).2
and are pairwise non-isomorphic. Moreover the fields L26c,τ are not isomorphic
with any of the 47 fields coming from 26a and 26b.

The seven elements τ with −2τ a square are τ = −u2/8 with u = 1, 2, 7/2, 4,
8, 44 and 10. A Frobenius computation shows generic behavior in the first six cases:
the splitting field of f13c(u, x) has Galois group all of SL3(3), and these six splitting
fields are non-isomorphic. Note that the degree thirteen fields Q[x]/f13c(u, x) and
Q[x]/f13c(−u, x) are non-isomorphic, corresponding to different permutation rep-
resentations of their common Galois group. This is seen clearly in the degenerate
case τ = −52/2. In this case, f13c(−10, x) factors as 9 + 4 and f13c(10, x) factors
as 12 + 1; the common Galois group is 31+2

+ .S̃4.
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The twinning phenomenon here is quite general, deriving from the fact that the
permutation representations of a group PGLn on the projective space Pn−1 and its
dual P̌n−1 are not isomorphic, for n ≥ 3. A prime ` and a degree n ≥ 3 being fixed,
say that a number field of degree `n−1 + `n−2 + · · ·+ `+1 is projective iff its Galois
group can be identified with PGLn(`), as a permutation group. Then a projective
field L has a non-isomorphic twin Lt, there being a canonical isomorphism L = Ltt.

This situation of twin projective fields contrasts in one important way with the
situation of twin A6 or S6 sextic fields, which played a role in Section 5. Namely,
the two different permutation representations induce the same linear representation
only in the projective case. So twin fields have the same Dedekind zeta function
only in the projective case. One can summarize by saying that A6 and S6 sextic
fields come in fraternal twin pairs while projective fields come in identical twin
pairs. In particular, twin projective fields have the same discriminant. In the cases
here, one has discriminants 228324, 236326, 228322, 238326, 232324, 238320 for |s| = 1,
2, 7/2, 4, 8, 44.

8. SU3(3) and SU3(3).2; connections with a base change

Here we work with a cover X28a → P1
t , which comes from a solution to the

matrix ABC equation (1.1) as follows.

us
28a(x) = (x− 1)2(x− i) = x3 + (1 + 2i)x2 + (1 + 2i)x + 2i

ws
28a(x) = (x + 1)2(x + i) = x3 + (2 + i)x + (1 + 2i)x + i

Λs
28a = (12A, 2A, 12B) → (1223 1, 21214, 1223 1) (genus three)

t = −(s− 1)2/4s

Λ28a = (4D, 2B, 12AB) → (4614, 21214, 1223 1)
f28a(t, x) = (x6 − 6x5 − 435x4 − 308x3 + 15x2 + 66x + 19)4 ·

(x4 + 20x3 + 114x2 + 68x + 13)− 2239t(x2 + 4x + 1)12(2x + 1)
D28a(t) = 25763630t18(t− 1)12

The monodromy group of the genus three cover Xs
28a → P1

s is the simple group
SU3(3). The Galois group is SU3(3).2, the corresponding constant field extension
being Q(i). The equation f28a(t, x) for Cover 28a appears in [MM, page 412]. Its
monodromy and Galois groups are both M28a = G28a = SU3(3).2.

Explicitly, the rigid solution to (1.1) we are using is

(8.1)

 0 0 i
1 0 2 + i
0 1 2 + i

 1 0 1 + 2i
0 1 0
0 0 2

 1 + i 1 0
2 + 2i 0 1

i 0 0

 = I.

The three displayed matrices generate M = SU3(3) inside GL3(9). In constrast,
the faithful linear representations of the larger group SU3(3).2 in characteristic two
and three all have dimension ≥ 6. None of these representations gives rise to a
rigid solution of the matrix equation (1.1). This is why our passage from (1.1) to
Cover 28a involves an intermediate cover.

The intermediate cover Xs
28a → P1

s is a pullback via the base change P1
s → P1

t ,
s 7→ −(s− 1)2/4s of the cover X28a = P1

x → P1
t . Some particular points that play
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a special role in our discussion behave as follows.

1 7→ 0(8.2)
−1 → 1(8.3)

0,∞ 7→ ∞.(8.4)

The points s = −1, 1 in P1
s are the unique ramification points of this quadratic

base change map. From (8.2), the ramification class 4D associated to t = 0 pulls
back to its square 2A, which is now associated to s = 1. From (8.3), the class 2B
associated with t = 1 pulls back to its square, the identity class 1A; so there is no
ramification associated to s = −1 in P1

s. Finally, from (8.4), the ramification class
12AB associated to t = ∞ splits into two ramification classes, 12A at s = 0 and
12B at the s = ∞. This entire discussion explains on a conceptual level why Cover
28a is ramified only at 2 and 3; were it not for the connection via the base change
to rigidity, one would have expected 7 to very likely ramify too.

Two of the specialization points τ in the 44-element set T ∗
4,2,12 yield a factor-

izable polynomial. Namely f28a(2/33, x) factors as 27 + 1 and f28a(−54/2333, x)
factors as 24 + 4. The splitting fields of these polynomials have Galois groups
31+2
+ .8.2 and 4.S4.2 respectively, these being maximal subgroups of U3(3).2. The

specialization point τ = 1/2 yields a polynomial with Galois group SU3(3); the re-
maining polynomals yield 41 distinct fields, all having Galois group all of SU3(3).2.

9. W (E6)′ and W (E6); exhibiting exceptional isomorphisms

Here we work with four degree twenty-seven covers, denoted 27a, 27b, 27c, 27d.
Cover 27a is due to Häfner [Häf], while 27b and 27c are new here. These three
covers are related to algebraic hypergeometric functions with finite monodromy,
corresponding to the entries 47, 45, and 48 on the Beukers-Heckman list [BH];
they all have M = G = W (E6). Cover 27d is also new. It is directly related
to hypergeometric-like functions with finite monodromy, namely functions corre-
sponding to the families A and D of [Rob2], rather than to the family H corre-
sponding to hypergeometric functions. Here, however we present 27d as related
via a base change to hypergeometric functions with infinite monodromy. For this
cover, M = W (E6)′ and G = W (E6), the corresponding constant field extension
being Q(

√
−3).

u27a = x6 + x3 + 1
w27a = (x2 + x + 1)(x2 + 1)(x + 1)(x− 1)
Λ27a = (9AB, 2C, 12C) → (93, 26 115, 12 6 42 1)

f27a(t, x) = (x3 + 6 x2 − 8)9 − t24312x6(x2 + 5 x + 4)4(x− 2)
D27a(t) = 24143450t24(t− 1)6

u27b = (x4 − x2 + 1)(x2 + x + 1)
w27b = (x4 + 1)(x + 1)(x− 1)
Λ27b = (12AB, 2C, 8A) → (122 3, 26 115, 83 2 1)

f27b(t, x) = 24x3(x2 − 3)12 − t39(x− 1)8(x− 2)(x2 − 2x− 1)8

D27b(t) = 25423270t24(t− 1)6
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u27c = u27a

w27c = w27b

Λ27c = (9AB, 2C, 8A) → (93, 26 115, 83 2 1)
f27c(t, x) = 218(x3 + 9 x2 + 6 x + 1)9 − 315 t x (2 x + 1)8(x2 − 2 x− 1)8

D27c(t) = 25223450t24(t− 1)6

us
27d = (x− 1)5 ∈ F3[x]

ws
27d = (x + 1)5 ∈ F3[x]

Λs
27d = (9A, 2A, 9A) → (93, 21213, 93) (genus 4)

t = −4s/(s− 1)2

Λ27d = (9A, 2B, 4A) → (93, 210 17, 46 13)
f27d(t, x) = 4(3x3 − 12 x− 8)9 − t(12x3 + 54 x2 + 63 x + 22) ·

(9 x6 + 81 x5 + 135 x4 + 276 x3 + 432x2 + 288 x + 64)4

D27d(t) = 25183450t24(t− 1)10

The three new covers were all found first modulo 5, and then lifted via the 5-adics
to rational solutions as explained in [Mal2]. The cover X28b of Section 11 was also
computed in this way. Of these four new covers, 27d was the hardest to obtain,
since the N + 2 parts of 3N are more evenly distributed among the cusps.

In cases 27a, 27b, and 27c, we specialize to τ in the 35-element set T ∗
9,2,12 =

T ∗
12,2,8 = T ∗

9,2,8 = T ∗
∞,2,∞. In case 27d, we specialize to τ in the 45-element set T ∗

9,2,4.
All 150 defining polynomials f27∗(τ, x) are irreducible, so all the algebras L27∗,τ are
fields. A Frobenius computation proves that at least 146 of these fields have Galois
group all of G or G′. Using the monodromy technique described in Section 11, we
have verified that each apparent group-drop indeed occurs, and computed degree
nine resolvents as follows.

h27a,−1(x) = x9 − 3x8 + 6x7 − 3x5 + 15x4 + 6x3 + 6x2 + 6x + 2(9.1)

h27b,−1/48(x) = x9 − 12x6 − 9x5 + 54x3 + 36x2 + 18x− 56(9.2)

g27d,1/2(x) = x9 − 6x7 + 27x5 − 12x4 − 174x3 − 108x2 + 183x + 124(9.3)

g27d,1/2·134(x) = x9 + 3x8 − 16x6 − 36x5 + 36x4 + 96x3 − 108x− 36.(9.4)

Here h27a,−1 and f27a,−1 have the same splitting field, and so too do h27b,−1/48 and
f27b,−1/48; the Galois groups here have the form 33.(S4×C2) and 33.S4 respectively.
On the other hand, the Galois groups G27d,1/2 and G27d,1/2·134 each have the form
31+2.S̃4; the corresponding degree nine resolvents have Galois group of the form
32.S̃4. The field discriminants of the four displayed nonic polynomials are 213315,
212318, −222313, and −222315 respectively.

All the 150 specializations are wild at both 2 and 3 except

(9.5) L27d,−48 = Q[x]/f27d(−48, x),

which is tame at 2, with discriminant 220384. The tameness at 2 can almost be seen
from the Newton polygon at 2, which has slopes 1/5, 1, 8/5, and 5 with multiplicities
10, 1, 15, and 1 respectively. It can be seen from the full 2-adic factorization of
f27d(−48, x) which has three factors of degree five and discriminant 24, one factor
of degree ten and discriminant 28, and two linear factors.
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The Frobenius computation proves that except for the possible isomorphism

L27b,−48
∼= L27d,32/81,

the 146 generic specializations are all distinct. To prove that L27b,−48 and L27d,32/81

are isomorphic one needs to exhibit the unique isomorphism; this is our topic for
the rest of the section.

In numerical terms, one needs to find the unique bijection σ from the complex
roots A = {αi} of f27b,−48 to the complex roots B = {βj} of f27d,32/81 such that
the the polynomial

(9.6) testσ,r(x) =
∏

i

(x− αi − rβσ(i))

has rational coefficients for all r ∈ Q; here we introduce r just to avoid possible
inseparability problems; in practice one can simply fix r at 1.

The bijection σ must intertwine complex conjugation: cB ◦ σ = σ ◦ cA. Since
the polynomials in question have exactly three real roots, there are 3!12!212 ≈
1.177× 1013 such bijections. The sheer size of this number is why Pari’s nfisisom,
which is designed to find isomorphisms between fields, does not work here. Indeed,
if we were simply given the bare polynomials f27b,−48 and f27d,32/81, we would not
know how to find the desired isomorphism.

But we are not given the polynomials in isolation. Rather we can figure out
how the monodromy operators mc act on the roots. In the case of f27b,−48 this
action is as follows.

m27b,0 = (1a, 15a, 7a, 4a, 3a, 2a, 2b, 3b, 4b, 7b, 15b, 1b)(5a, 6, 5b) ·
(11, 12b, 13b, 14b, 8b, 9b, 10, 9a, 8a, 14a, 13a, 12a)

m27b,∞ = (1a, 1b)(2a, 3a, 4a, 5a, 5b, 4b, 3b, 2b)(6, 7a, 8a, 9a, 10, 9b, 8b, 7b) ·
(11)(12a, 13a, 14a, 15a, 15b, 14b, 13b, 12b).

Here we have ordered the Gal(C/R)-orbits from left to right, 1 through 15. If a
root is in the lower half plane, we append “a”; if it is the upper half plane we
append “b”; if it is on the real line we index the root simply by a number; thus
α1a = −(12.976 . . . ) − (243.333 . . . )i and α6 = .518 . . . . The action of m27b,0 is
obtained by considering the inverse image of [−48, 0] in the complex plane with
coordinate x. It is the union of three “wheels,” two with 12 spokes and one with 3.
The action is obtained by “rotating the wheels one spoke counter-clockwise.” All
this can be done numerically, working visually with say the roots of f27b(−48u12, x),
with u = 0, 1/100, 2/100, . . . , 1; restricting to u ≥ 20/100 lets one work entirely in
standard precision and still do the computation. The other monodromy action
m27b,∞ is obtained similarly, i.e. again in the the spirit of Grothendieck’s dessins
d’enfants [Sch]. Repeating the procedure for the roots of f27d,32/81 gives

m27d,0 = (1a, 2a, 10a, 6a, 3, 6b, 10b, 2b, 1b)(9b, 8b, 7b, 5b, 4, 5a, 7a, 8a, 9a) ·
(11a, 13a, 14a, 12a, 15, 12b, 14b, 13b, 11b)

m27d,1 = (5a)(5b)(13a)(13b)(14a)(14b)(15)(1a, 1b)(2a, 12a)(2b, 12b) ·
(3, 4)(6a, 9a)(6b, 9b)(7a, 8a)(7b, 8b)(10a, 11a)(10b, 11b).

Let C be one of the two root sets A or B. We use the monodromy action to
view the 27-element set C as a structured set. Namely consider the set Sub2(C)
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of two-element subsets. Under the action of the monodromy group one has a
decomposition into two orbits

Sub2(C) = Sub2(C)′
∐

Sub2(C)′′.

Here the first orbit has 135 elements and the second has 216. In other words, we
can view C as the vertices of a graph ΓC , with edge-set Sub2(C)′. The action of
complex conjugation on C extends to ΓC . The graph-with-involution (ΓC , iC) has
only 2732 = 1152 automorphisms.

The bijection σ : A → B we seek respects not only complex conjugation but
also the graph structure. To find it, we work purely group-theoretically to first find
some isomorphism s : (A, iA) → (B, iB) respecting the graph structure; this is easy.
Then we compose it with the 1152 elements of Aut(ΓB , iB) to get 1152 candidates
for σ. For only one of them does (9.6) appear to have rational coefficients, and we
have thereby numerically determined σ. It is as follows:

roots of f27b,−48: 1a 2a 3a 4a 5a 6 7a 8a 9a 10 11 12a 13a 14a 15a
roots of f27d,32/81: 7b 1b 9a 5b 8a 4 6a 2b 11a 15 3 14b 13a 12b 10a

Here, since σ(α1a) = β7b, we must have σ(α1b) = β7a as well, and so too for the
other complex conjugate pairs.

To check rigorously that indeed σ induces an isomorphism we proceed as follows.
First, we numerically solve the 27-by-27 system Tz = B with Tik = αk

i and Bi =
βσ(i) for the vector z, rationalizing at the end. Then

(9.7) y =
26∑

k=0

zkxk,

as an element of the ring Q[x]/f27b(−48, x), should satisfy f27d(32/81, y) = 0. In
our case, (9.7) takes the explicit form 126414618624y =

−778448003x26 −981509289x25 −45939794218464x24

1137207587245554x23 −12724591174373616x22 84720990963862440x21

−370643301489686778x20 1104517184207752350x19−2221386267735948267x18

2770729912599438087x17−1364804638977353670x16−1659195683617968252x15

3294135546577106040x14−1424334213106643304x13−1494872066602993428x12

1744593287940021708x11 58514783809113639x10 −818860129717879323x9

171625804007741892x8 237402868177405098x7 −68548289134461768x6

−50056832848713984x5 11561622988644846x4 7711324091701110x3

−484480924209657x2 −608102864271747x −73397655884286.

This indeed satisfies f27d(32/81, y) = 0. The case L13c,1/4
∼= L13c,−8 from §8 is

substantially easier, as the root sets to be identified have only 13 elements each.

10. A9 and S9; cuspidal specialization

Let (A,B,C) be a rigid solution to the matrix ABC equation (1.1) generating
a subgroup M̃ of GLn(F̄`) with center Z. Almost always, M̃ is closely related to a
finite classical group, i.e. an orthogonal group, a symplectic group, a unitary group,
or a general linear group. Our ABC construction requires us to choose a faithful
permutation representation of M = M̃/Z, i.e. an overgroup SN ⊇ M , and only
then do we have a three point cover for which we seek an equation. The equations
we have been finding are rather complicated, because they reflect not only the
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fundamental datum (A,B,C), but also the choice of SN . Accordingly, even though
solutions to (1.1) come in very regularly behaving families, we have had to work
one cover at a time.

In this section, we are in the very exceptional situation where the monodromy
group is closely related to a symmetric group. We work with two positive integer
parameters N > m, and the construction is uniform in these parameters. Through-
out, we take r = N −m.

uN,m(x) = (xN − 1)/(x− 1)
wN,m(x) = (xm − 1)(xr − 1)/(x− 1)

ΛN,m = (N, 2 1N−2, mr)

fN,m(t, x) = mmxN − t(Nx− r)m

DN,m(t) = (−1)(N+2m)(N+1)/2NN (mr)(N−1)mtN−1(t− 1).

The cover XN,m is isomorphic to the cover XN,r, an isomorphism being x 7→
mx/(Nx − r). So, without loss of generality, we restrict to the case m ≤ N/2.
We assume further that N and m are relatively prime, so as to make uN,m(x) and
wN,m(x) relatively prime and hence (1.6)-(1.8) irreducible. In this case, the mon-
odromy group MN,m and the Galois group GN,m are both the full symmetric group
SN .

For m = 1, the polynomial fN,m is a trinomial and these covers have been
discussed in e.g. [Mat, Section II.3]. As we explain next, even the other covers
XN,m can be given by trinomial equations, and in this guise they have appeared in
many places. Define integers v and w by

v ∈ {0, 1, . . . , r − 1}
Nv ≡ 1 mod (r)

w = (Nv − 1)/r.

Define

y =
(

m

Nx− r

)w−v

xw ∈ Q(x).

One has
ym = tw−vx ∈ Q(x)

and y is a root of
f∗N,m(t, y) = myN −Ntvym + rtw.

In summary, we have two defining polynomials for the same cover, the canonical
one fN,m and a trinomial version f∗N,m. We use f∗N,m exclusively in the sequel.
We mention fN,m because this is the cover given by the standard three point cover
algorithm sketched in Section 5: x is a coordinate on XN,m while y is a rational
function in x, typically of degree > 1. The general trinomial axN + bxm + c fits
in this situation via t = (m/a)m (b/N)N (r/c)r. Thus we call the XN,m trinomial
covers.

The bad reduction set SN,m is the set of primes dividing Nmr; in other
words, XN,m has bad reduction within S iff N/m ∈ T∞,∞,∞(ZS). In particu-
lar, SN,m ⊆ {2, 3} exactly for the four pairs (N,m) = (2, 1), (3, 1), (4, 1), and
(9, 1). For comparison, we note that specializing f3,1 just at T ∗

∞,2,∞ already yields
all 9 A3/S3 cubics. Similarly, specializing f4,1 just at T ∗

∞,2,∞ already yields all 23
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A4/S4 quartics, except the unique totally real one; in fact, no specialization of f4,1

is totally real.
We are interested here in the case (N,m) = (9, 1), coming from the Catalan

equation 23+1 = 32. Here a Frobenius computation shows that nothing unexpected
happens when one specializes t to τ in the 35-element set T ∗

8,2,9 = T ∗
∞,2,∞. One

gets 10 fields with Galois group A9 and 25 with Galois group S9. The absolute field
discriminants 2a3b are mostly near the maximum possible 231326, with 12 ≤ a ≤ 31
and 12 ≤ b ≤ 26 being the exact ranges. [LNV] lets one understand a and b in
terms of the 2-adic and 3-adic placement of τ , respectively.

In general, suppose X → P1
Q is a three point cover with defining equation

f(t, x). It makes sense to specialize t to one of the cuspidal points c = 0, 1, and
∞ as well, to obtain a Galois field Kc ⊂ C. Let Normc be the normalizer of the
monodromy transformation mc in G. Then Gal(Kc/Q) is contained in Normc/〈mc〉.

For the covers XN,m of this section, the most interesting cusp to specialize at
is c = 1. The Galois group GN,m,1 is contained in a symmetric group SN−2. These
fields KN,m,1 ⊂ C have been studied in [Bor]. In our example, one has

f9,1(1, x) = (x− 1)2(x7 + 2x6 + 3x5 + 4x4 + 5x3 + 6x2 + 7x + 8).

The septic field defined by the degree seven factor has Galois group S7 and discrimi-
nant −212310. In general, cuspidal specializations seem worthy of special attention.
First, they depend only on the group-theoretic data defining the cover from which
they come. Second, they serve as an aid in understanding non-cuspidal specializa-
tions which are p-adically near the cusp.

11. W (E7)′; computing lower degree resolvents

Here we use the following new cover with M = G = W (E7)′ = Sp6(2):

u28b = (x6 − x3 + 1)(x + 1)
w28b = (x4 − x2 + 1)(x2 + x + 1)(x− 1)
Λ28b = (12C, 2A, 9A) → (122 3 1, 26 116, 93 1)

f28b(t, x) = 36 (x2 + 6 x + 6)12x3(3 x + 4)− t 218 (x3 + 3 x2 − 3)9

D28b(t) = 25403450t24(t− 1)6.

Here x, as a multivalued function of t, can be expressed in terms of hypergeometric
functions with finite monodromy, as this cover corresponds to Entry 58 of the
Beukers-Heckman list [BH, page 353].

We specialize to τ in the 35-element set T ∗
12,2,9 = T ∗

∞,2,∞. A Frobenius com-
putation proves that for τ 6= −1 the algebras L28b,τ all have Galois group all of
Sp6(2). At τ = −1, there is an apparent group-drop to S8

∼= SO+
6 (2) ⊂ Sp6(2).

The rest of this section explains how we produce a degree eight polynomial with
the same splitting field as f28b(−1, x), thereby proving that indeed G28b,−1

∼= S8.
In general, suppose given an irreducible degree 28 polynomial f over Q with

Galois group S8 or W (E7)′. For each bijection

L = (Two element subsets of {0,. . . ,7}) → Complex roots of f
{i, j} → αL(i,j),
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one has an octic polynomial

gL(x) =
8∏

i=1

(x−
∑
j 6=i

αL(i,j)).

Assuming f is sufficiently generic, one gets 28!/8! ≈ 7.5× 1024 distinct octic poly-
nomials. If the Galois group is S8, then exactly one of these has coefficients in Q,
it being the desired polynomial.

Suppose now that f has exactly four real roots so that the desired octic has two
real roots. Then it suffices to consider bijections L where the involution−1 acting on
Z/8 goes over to complex conjugation. Then one gets (4!24!!)/(2!3!23) ≈ 4.9× 1011

octic polynomials. So still this method for finding a resolvent octic is impractical.
In our case, however, we have an action of W (E7)′ ⊂ S28 on the roots of

f28b(−1, x) and the desired gL is among the thirty-six gL coming from the thirty-six
subgroups of W (E7)′ isomorphic to S8. Using monodromy techniques as described
in Section 9, we can identify these 36 copies of S8. Looking among only these, we
find a labeling L giving a desired g with quite large coefficients. Applying polredabs,
gives

(11.1) g8(x) = x8 + 4x7 + 8x6 + 16x5 + 22x4 + 20x3 + 10x2 − 8x− 10,

with field discriminant −21739.
To prove rigorously that f28b(−1, x) and g8(x) have the same splitting field, we

proceed again as in Section 9. Write

g8(x) =
∏

α∈A′

(x− α)

g28(x) =
∏

{α1,α2}⊂A′

(x− α1 − α2)

f28b(−1, x) = 37
∏
β∈B

(x− β).

We need to numerically find the right bijection σ from A = Sub2(A′) to B, and
then algebraically confirm that one indeed gets an isomorphism from Q[x]/g28(x) to
Q[y]/f28b(−1, y). This unique correct bijection is indicated on the following chart,
with the root-labeling convention of Section 9:

1 2a 2b 3a 3b 4a 4b 5
1 11b 11a 13a 13b 10a 10b 2

2a 15 5b 14b 12b 7b 16a
2b 14a 5a 7a 12a 16b
3a 9 4a 8a 3b
3b 8b 4b 3a
4a 1 6a
4b 6b
5

Thus, for example, {α1, α2} = {1, 2a} ∈ A matches 11b ∈ B. Our computation
and confirmation of the resolvents (9.1), (9.2), (9.3), (9.4) were each of similar
complexity.
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12. S32; prime-dropping specialization

Let f(t, x) ∈ Q[t, x] define a degree N three point cover, with bad reduction
set S′. For τ ∈ Q−{0, 1} it may happen that the specialized algebra Lτ is ramified
strictly within S′. Then we call τ a prime-dropping specialization point for f . Our
experience suggests that such prime-dropping specialization points are quite rare.
Here we report on three related instances of this phenomenon.

Consider again the trinomial covers XN,m of Section 10, with r := N−m. Recall
that the specialized algebra is given by a trinomial equation: Lτ = Q[x]/f∗N,m(τ, x).
Recall also that the cover has bad reduction at all primes dividing Nmr. Nonethe-
less, one has the following fact, i being any positive integer:

(12.1) If pe||

 N
m
r

and τ ∈

 T (Qp)0,Nei

T (Qp)∞,mei

T (Qp)∞,rei
then KN,m,τ is unramified at p

This fact can be proved directly: for suitable rational numbers a and b, one has
af∗N,m(τ, bx) ∈ Z[x], with polynomial discriminant prime to p, as in (12.2), (12.3),
and (12.4) below. Alternatively, this fact is a special case of the main theorem of
[LNV].

We found three new fields this way with S = {2, 3}. All three fields come from
the specialization point τ = 2 · 55/32, associated to the ABC triple

−2 · 55 + 792 + 32 = 0.

The fields come from the covers

f∗8,3(t, x) = 3x8 − 8t2x3 + 5t3

f∗9,4(t, x) = 4x9 − 9t4x4 + 5t7

f∗32,5(t, x) = 5x32 − 32t11x5 + 27t13.

Nice defining polynomials for the number fields are as follows.

375−16f∗8,3(2 · 55/32,−52x/3) = x8 + 25x3 + 233(12.2)

2−23185−36f∗9,4(2 · 55/32, 54x/32) = x9 − 2234x4 + 2534(12.3)

332565f∗32,5(2 · 55/32,−52x/3) = x32 + 21635x5 + 21339.(12.4)

The polynomial discriminants are −24535792, −240348792, and −25633277792, re-
spectively. The field discriminants are −23135, −214324, and −21913111, respec-
tively. Here, in the degree 32 case, we used [LNV] to compute the exponents 191
and 111. Note that the maximal absolute discriminant allowed by local considera-
tions in the last case is 21913112.

In all three cases, the fact that 79 does not divide the field discriminant d
can be seen directly from the polynomial, rather than by our usual appeal to (3.4).
Namely, each polynomial factors in the form fN−2f

2
1 over F79, with fN−2 separable.

This implies that ord79(d) ∈ {0, 1}. However from the polynomial discriminant we
know that ord79(d) ∈ {0, 2}.
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