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Abstract 6 

New cosmogenic 10Be surface exposure ages from seventeen moraine boulders in the Mosquito Range 7 

suggest that glaciers were at their late Pleistocene (Pinedale) maximum extent at ~21–20 ka, and that ice 8 

recession commenced prior to ~17 ka. These age limits suggest that the Pinedale Glaciation was 9 

synchronous within the Colorado Rocky Mountain region. Locally, the previous (Bull Lake) glaciation 10 

appears to have occurred no later than 117 ka, possibly ~130 ka allowing for reasonable rock weathering 11 

rates. Temperature-index modeling is used to determine the magnitude of temperature depression required 12 

to maintain steady-state mass balances of seven reconstructed glaciers at their maximum extent. 13 

Assuming no significant differences in precipitation compared to modern values, mean annual 14 

temperatures were ~8.1 and 7.5 °C cooler, respectively, on the eastern and western slopes of the range 15 

with quantifiable uncertainties of +0.8/–0.9 °C. If an average temperature depression of 7.8 °C is assumed 16 

for the entire range, precipitation differences - that today are 15-30% greater on the eastern slope due to 17 

the influence of winter/early spring snowfall - might have been enhanced. The temperature depressions 18 

inferred here are consistent with similarly derived values elsewhere in the Colorado Rockies and those 19 

inferred from regional-scale climate modeling.  20 

Keywords: Colorado; Pinedale glaciation; cosmogenic exposure dating; glacial chronology; paleoclimate    21 

Introduction 22 

The precise timing of Late Pleistocene glacial advances and deglaciation in the western United States and 23 

the magnitude of their respective causative forcings inform our understanding of paleoclimate dynamics 24 

(Licciardi et al., 2004; Thackray, 2008). Despite the increasing number of well-constrained glacial 25 

chronologies across the montane western U.S. (e.g. Phillips et al., 1990, 1996, 2009; Gosse et al., 1995; 26 

Licciardi et al., 2001, 2004; Leonard et al., 2017a; Licciardi and Pierce, 2018), additional studies are 27 

needed in order to better define spatial and temporal patterns of glacier behavior and climate during the 28 

last Pleistocene glaciation. Specifically, asynchronous glacier behavior might reveal the influence of 29 

secondary climatic factors or internal dynamics affecting response that are superimposed on global-scale 30 

drivers of climate change (e.g insolation and atmospheric CO2). These include differences in glacier 31 

hypsometry, local or microclimate (i.e. sub-regional energy and mass balances), and/or glacier response 32 
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times (e.g. Thackray, 2008; Laabs et al., 2009; Young et al., 2011). Glacial chronologies also provide a 33 

temporal context for proxies of Late Pleistocene climate inferred from glacier fluctuations. Because the 34 

Last Glacial Maximum (LGM), in particular, represents a unique climatic state very different than those 35 

of the subsequent 20 ka, glacial records provide important information unavailable from many other 36 

sedimentary and biological records (e.g. pollen spectra) because of limits of the length of the respective 37 

records or geographic coverage. Thus glacial chronologies and their value for understanding LGM 38 

climate represent fundamental data that are critical in evaluating the skill of models (so-called 39 

“hindcasting”) used to project future global change (Braconnot et al., 2012; Flato et al., 2013; Kageyama 40 

et al., 2017). The increasing number of precise glacial chronologies notwithstanding, few (e.g. Ward et 41 

al., 2009; Leonard et al., 2017a) have been integrated with modeling approaches to infer details 42 

concerning climate change during the last glaciation.  43 

Addressing the need for both additional glacial chronologies and climate reconstructions in the Rocky 44 

Mountains, we present here new cosmogenic 10Be surface-exposure ages of moraines and model-derived 45 

limits on Late Pleistocene climate from the Mosquito Range, Colorado, an area that has received little 46 

attention with respect to its glacial history. Exposure ages obtained from moraine boulders indicate 47 

glaciers achieved their last Pleistocene maximum extent ca. 21–20 ka and overall deglaciation 48 

commenced by 17 ka. Our results suggest the timing of moraine occupation in the Mosquito Range agrees 49 

with recent Pleistocene glacial chronologies developed in adjacent ranges in Colorado. Limits on the last 50 

glacial climate in the study area are inferred from temperature-index modeling, which determines 51 

temperature depressions required to maintain steady-state mass-balances of reconstructed paleoglaciers. 52 

Our estimates of temperature depression in the Mosquito Range are in excellent agreement with those 53 

similarly determined in the region.  54 

Study Area 55 

The Mosquito Range is a north-south trending range bordered by the upper Arkansas River valley and 56 

Sawatch Range to the west and South Park and the southern Front Range to the east (Fig. 1). The 57 

Arkansas River valley is a topographic expression of the northernmost extent of the Rio Grande Rift that 58 

became tectonically active ca. 30–25 Ma (Kellogg et al., 2017). Many peaks exceed 4000 m and features 59 

typical of alpine glaciation and periglacial activity characterize landscapes at higher elevations. 60 

Structurally the range is cored by Precambrian crystalline rocks unconformably overlain by complexly 61 

faulted and folded Paleozoic clastics and carbonates that were later intruded by a suite of Tertiary sills, 62 

dikes, and small plutons (McCalpin et al., 2012a, b; Kellogg et al., 2017). 63 
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Late-Quaternary glaciation in the Mosquito Range was characterized by extensive valley glacier 64 

systems (Fig. 2a). These systems were to a large degree interconnected either by virtue of common ice 65 

fields and/or pervasive ice divides. The ice fields also solely supported several small ice lobes. In some 66 

locations glaciers in adjacent valleys coalesced to form composite termini. Glaciers were more extensive 67 

in the northern part of the range where ice masses were contiguous with ice sourced from the Tenmile 68 

Range and other isolated peaks. An east-west asymmetry with respect to glacier length and area existed 69 

during the LGM that becomes more pronounced in the central and southern part of the range. Glaciers had 70 

both greater lengths and surface areas on the eastern slope. Although the elevations of catchment areas are 71 

comparable (~3600–3800 m), glaciers there terminated at lower elevations than did those on the western 72 

slopes. Well-preserved terminal and lateral moraines of the last (Pinedale) and penultimate (Bull Lake) 73 

glaciations are common at the mouths of glaciated valleys, and in most are delineated on bedrock maps 74 

(Widmann et al., 2007; McCalpin et al., 2012a, b; Bohannon and Ruleman, 2013; Kellogg et al., 2017). 75 

The relative ages of these moraines can generally be distinguished by morphostratigraphic criteria (e.g. 76 

boulder abundance and freshness, sharpness of moraine crests, etc.). In these valleys recessional moraines 77 

of the Pinedale Glaciation are also evident. 78 

Modern climate in the Mosquito Range is continental, with mean annual temperatures (MAT) of ~2 79 

°C at the mountain fronts (~3000 m) and ~-5 °C at the highest elevations (>4000 m). (Data from the 80 

stations shown in Fig. 1 are derived available through the Western Regional Climate Center, 81 

http://wrcc.dri.edu, and the National Water and Climate Center, http://wcc.nrcs.usda.gov, in addition to 82 

that provided by the PRISM Climate Group, Oregon State University, http://prism.oregonstate.edu.) 83 

Mean January and July temperatures typically deviate from the mean annual temperature by ±10 °C 84 

irrespective of elevation. For a given elevation, MATs tend to be on average ~1 °C warmer on the eastern 85 

slope of the range at elevations between 3000 and 3700 m. At the highest elevations (>3700), MAT are 86 

slightly cooler by ~ 0.5 °C.  87 

Mean annual precipitation (MAP) varies from ~40 cm at the lowest elevation of the range to ~120 cm 88 

on the high peaks, averaging ~76 cm. The monthly/seasonal distribution of precipitation varies over the 89 

range; however, the general pattern is bimodal with an early maximum in late winter/early spring and a 90 

later maximum corresponding to mid-to-late summer (Fig. 3a). The earlier maximum is more muted at the 91 

lowest elevations but at higher elevations it is comparable to or greater than the later maximum. 92 

For much of the year, moist Pacific air is delivered to the Colorado Rocky Mountains by prevailing 93 

westerly flow. The Mosquito Range, being essentially on the eastern boundary, therefore receives less 94 

precipitation than ranges farther west. However, during the late winter and early spring, synoptic 95 

circulation patterns cause upslope precipitation of southeasterly Gulf of Mexico-derived moisture. This 96 
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disproportionally affects the eastern slopes. Mid- to late summer precipitation is associated with the North 97 

American monsoon (Higgins et al., 1997) that brings moisture from the Gulfs of both Mexico and 98 

California. The PRISM model yields an area-averaged value for MAP for the eastern slope of ~0.8 m 99 

while that for the western slope is ~0.7 m. Given similar elevations, available station records also suggest 100 

the eastern slope receives ~0.1 m more precipitation annually than does the western slope. More 101 

significantly for this study, winter precipitation (October-April) at elevations between 3000 and 3500 m 102 

(Fig. 3b) is ~13% greater on the eastern slope. Disregarding the Fremont Pass SNOTEL site that appears 103 

to be anomalous, this disparity increases to ~20%. Extrapolation of the respective trends suggests that at 104 

higher elevations (3500–4200 m) the eastern slope could receive as much as 30% more precipitation 105 

during the winter.    106 

Methods 107 

Cosmogenic 10Be exposure dating  108 

Ten boulders from mapped terminal moraine complexes of the Pinedale glaciation in three glaciated 109 

valleys were sampled for exposure ages, specifically in the valleys of Iowa Gulch, Twelvemile Creek, and 110 

Fourmile Creek (Fig 4). In Big Union Creek, four boulders were sampled from a moraine that was/is 111 

interpreted as being deposited during a recessional stillstand or minor readvance of ice after the terminal 112 

moraine was abandoned. Sampling of the terminal moraine in this valley, about one kilometer 113 

downvalley, was avoided because of its poor preservation and lack of suitable boulders. Similarly, the 114 

only boulder suitable and/or accessible for sampling in the Sacramento valley was on the distal slope of a 115 

recessional moraine (Fig. 4). Additionally, two boulders on a moraine segment mapped as pre-Pinedale in 116 

the Iowa Gulch valley (Kellogg et al., 2017) were sampled. Boulders selected for sampling were located 117 

on or as close to moraine crests as possible, and all were granitic lithologies. Where possible, samples 118 

were collected from the tops of boulders standing >1 m over the moraine surface, however boulders 119 

having heights as little as ~0.4 m were also sampled. Preference was given to boulders exhibiting smooth, 120 

polished surfaces but given the coarse nature of the lithologies some sampled boulders did not meet this 121 

criterion. Large boulders suitable for sampling on several other moraine segments preserved in the study 122 

area were extremely scarce. The reason for this scarcity is unclear, but agreement among exposure ages 123 

for each sampled moraine crest suggests that boulder removal or degradation by weathering and erosion 124 

has been minimal. Moreover, some moraines in the study area were on private property and were 125 

therefore not accessible for sampling. Altogether, seventeen samples were ultimately prepared for 126 

cosmogenic isotope analyses and submitted for 10Be/9Be measurement by accelerator mass spectrometry; 127 

see Supporting Information for details concerning sample information, processing, and calculation of 10Be 128 

exposure ages. 129 
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Glacier reconstruction 130 

Field mapping of glacial features to verify and augment those shown on existing geologic maps, 131 

examination of topographic maps and digital elevation models, and use of Google Earth® imagery 132 

allowed for the determination of the maximum extents of seven paleoglaciers (Fig. 2) on the basis of 133 

lateral-terminal moraine complexes and the upper limits of glacial erosion. Ice surface contours were 134 

reconstructed by considering mapped ice limits, flow patterns delineated by large-scale erosional forms 135 

(e.g. valley trends, streamlined bedrock, roche moutonnées), and general convergent and divergent flow 136 

in the accumulation and ablations area respectively. Contours were adjusted iteratively so that 137 

reconstructed ice surface slopes were sub-parallel to those of the valley and to ensure driving stresses τ 138 

were between 50 and 150 kPa commonly measured on modern glaciers (Cuffey and Paterson 2010). 139 

Stresses were calculated using: 140 

 ! = 	 $ƒ&'ℎ	)*+, (1) 141 

where ρ is the density of ice, g is gravitational acceleration, h is ice thickness, α is the slope of the ice 142 

surface, and Sƒ is a shape factor to account for drag of the valley sides (Nye, 1965). The surface slope was 143 

averaged over distances of 10h to account for longitudinal stress gradients (Bindschadler et al., 1977; 144 

Cuffey and Paterson, 2010). 145 

Temperature-index modeling 146 

The temperature-index model (TM) used here is a modified version of what was presented in Brugger 147 

(2010).  In short, the TM is used to find the temperature and precipitation changes required to maintain 148 

steady-state mass-balances of the reconstructed glaciers. To this end an approach was sought that 149 

minimized tuning of model parameters. 150 

The variation of the annual specific mass-balance (i.e., at a point) bn with elevation z is simulated by: 151 

 -. / = 01 2, / + 	5 2, /
67

68
92	 (2) 152 

where Ps(t,z) is the rate of snow accumulation, M(t,z) the rate of snow or ice melt (ablation) over the 153 

glacier’s surface during the interval t1 to t2 (the hydrologic year).  In practice Equation (2) is numerically 154 

integrated over a monthly time-scale to yield monthly melt that is then combined with available monthly 155 

precipitation data and then integrated over the hydrologic year.  156 

Melt is determined using a melt (or degree-day) factor mƒ that empirically relates ablation to mean 157 

daily air temperature Td(t,z):  158 

 5 /, 2 =
:ƒ;< 2, / 								;< 2, / > ;>	

0																							;< 2, / ≤ ;>
 (3) 159 
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where Tm is a threshold temperature above which melting occurs. 160 

The simplicity of the empirical approach to ice and snow ablation implicit in Equation (3) has the 161 

advantage of requiring far less meteorological data and/or parameterization than “enhanced” temperature-162 

index models, or other energy balance approaches, wherein a radiation balance is considered. 163 

Furthermore, temperature-index methods perform well over basin-size spatial scales and intervals of time 164 

exceeding a few days (Hock, 1999; 2003). In recent comparisons of approaches to long-term ablation 165 

simulation, the performance of simple temperature-index methods compared favorably to, and in some 166 

instances exceeded, more physically-based models (e.g. Vincent and Six, 2013; Réveillet et al., 2017) or 167 

otherwise point to shortcomings of energy-balance models (Gabbi et al., 2014). Thus TMs are especially 168 

suitable for determination of temperature depression during glaciation given the suite of meteorological 169 

and atmospheric unknowns.  170 

Simulations were run using Tm = +1 °C but also 0 °C given both values have been used in previous 171 

studies (e.g. Hock, 1999; Pellicciotti et al. 2005; Gabbi et al., 2014; Réveillet et al., 2017;). Values mƒ for 172 

snow and ice are taken as 0.45 and 0.80 cm water equivalent (w.e.) d-1 °C-1, respectively as these are 173 

reasonable means of mƒ values obtained for relatively debris-free ice and snow on modern glaciers (Hock, 174 

2003; Braithwaite, 2008; Brugger, 2010). However, although there are outliers, mƒ values for snow 175 

reported in the literature typically range from ~0.3 to ~0.6 cm w.e. d-1 °C-1, while those for ice lie between 176 

~0.6 and 1.0 cm w.e. d-1 °C-1. Thus we show subsequently that our results are not unduly sensitive to the 177 

precise values of mƒ.  The latter is also significant in light of research that indicates degree-day factors 178 

vary spatially owing to local energy balances, for example topographic shading or surface slope and 179 

aspect, and temporally according to climate and weather (Hock, 2003; Pelliciotti et al., 2005; Mathews et 180 

al., 2015). In the TM the value of mƒ is initially set for that of snow, but once snow melt exceeds 181 

accumulation it changes to that for ice. 182 

In contrast to previous applications of the TM (Brugger, 2006; 2010) in which air temperature was 183 

assumed to vary sinusoidally about some annual mean, the algorithm used here is: 184 

 ;< /, 2 = 	 A
BCDEF

7GH

IJK
CL

M

N

− ;PQ.(/) − ∆; (4) 185 

where H is the magnitude of the yearly temperature variation, d is the day of the year, φ is the phase lag 186 

(= 0.359 rads), and Tjan(z) is the mean January temperature at elevation z, and ∆T is a prescribed 187 

perturbation of mean annual temperature (i.e. LGM temperature depression). Values of Tjan(z) are 188 

calculated using modern lapse rates obtained using available data (Table 1) with respect to Tjan(z) at a 189 

reference elevation. Table 1 also shows that a significant difference in the January lapse rate exists 190 
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between the eastern and western sides of the Mosquito Range (also for other months) reflecting the 191 

difference in climates (which are also represented in the monthly PRISM models). Note that 192 

implementation of Equation (4) implies a uniform perturbation of temperature over the year, that is no 193 

temperature seasonality is examined in the present study. The constant k in Equation (4) is a tuning 194 

parameter that controls the sharpness of the temperature curve and allowed a better fit to observed 195 

temperatures. Values of k (1.46 on the east side of the range, 1.45 on the west) were chosen to minimize 196 

the root mean square error RMSE between simulated mean monthly temperatures and those recorded at all 197 

relevant meteorological stations. Particular attention was on accurately simulating temperatures during the 198 

ablation season (discussed subsequently). Values of H are remarkable consistent at all elevations on each 199 

side of the range (Table 1).  200 

Snow accumulation Ps(t,z) is determined by:  201 

 Ps(t,z) = ƒPmod(t,z) + F (5) 202 

where Pmod(t,z) is the modern precipitation, ƒ is a partitioning function that determines what fraction of 203 

monthly precipitation fall as snow based on a continuous function of air temperature (Brugger, 2010), and 204 

F is a prescribed change in precipitation (i.e. assumed changes in precipitation during glaciation). Values 205 

for Pmod(t,z) are calculated from the monthly fraction of the respective seasonal (winter, spring, summer, 206 

fall) totals and corresponding vertical precipitation gradients (Table 1). This approach is also a departure 207 

from previous implementations of the TM that used a vertical precipitation gradient based solely on mean 208 

annual precipitation. Use of seasonal gradients ensured that simulated precipitation, particularly that 209 

during the accumulation season (i.e. late fall to early spring), was not unduly influenced by the “steep” 210 

summer gradients that are significantly different and are poorly defined. It should be noted that summer, 211 

and more generally all, rain — not treated in temperature-index methods — can contribute to ablation but 212 

its contribution is usually negligible for non-maritime glaciers (Cuffey and Paterson, 2010). Monthly 213 

precipitation gradients for each season do not significantly differ (<10%) justifying the use of seasonal 214 

averages. The monthly fraction of seasonal precipitation is largely independent over the elevation range 215 

of interest here (~3000–4000m) with values varying less than ~10% during the accumulation season.   216 

Results 217 

Cosmogenic 10Be exposure ages   218 

Cosmogenic 10Be exposure ages at Iowa Gulch (Table 3) yield distinct populations of ages across the two 219 

sampled moraine crests (Fig. 4). Two, zero-erosion exposure ages on the outer moraine are 115 ± 6 ka 220 

and 120 ± 5 ka, corresponding to the last global interglaciation during MIS 5e (Lisiecki and Raymo, 221 

2005). The assumption of zero erosion at the boulder surface is inconsistent, however, with studies of 222 

exposed coarse-grained granitic rocks elsewhere in the Rocky Mountains (Benedict, 1993; Small et al., 223 
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1997). Although it is not possible to precisely limit the rate of boulder surface erosion, Benedict (1993) 224 

estimated a time-averaged erosion rate of 1 mm kyr-1 at a similar altitude and latitude in Colorado. 225 

Applying that same erosion rate to surfaces IG-01-16 and IG-02-16 yields exposure ages of 133 ± 3 ka 226 

and 127 ± 4 ka. These ages align with the end of MIS 6, the time of the penultimate global glaciation. 227 

Cosmogenic 10Be exposure ages of four boulders atop the inner moraine in Iowa Gulch yield a mean 228 

exposure age of 20.6 ± 1.1 ka (1σ). Three of the four exposure ages overlap at 1σ, with the fourth 229 

exposure (sample IG-04-16) being somewhat younger than the oldest three. We conclude that the mean of 230 

all four exposure ages represents the true age of the moraine, which is firmly within MIS 2. 231 

In Union Canyon, four exposure ages (Table 3) from atop the recessional moraine (~1 km upvalley 232 

from the outermost Pinedale moraine; Fig. 4) feature three overlapping exposure ages with a mean of 17.1 233 

± 0.4 ka and one older exposure age (of 20.1 ± 0.5 ka) that does not overlap with the younger three at 2σ. 234 

The older exposure age is more consistent with the age of the terminal Pinedale moraine in Iowa Gulch, 235 

suggesting that ice in both valleys was at or near the maximum extent at ~20 ka. The younger three 236 

exposure ages in Union Canyon indicate that the ice was also near its maximum extent at 17.1 ± 0.4 ka.  237 

Cosmogenic 10Be exposure ages of Pinedale-age terminal and recessional moraines in the valleys of 238 

Twelvemile, Fourmile, and Sacramento Creeks (Table 3) are consistent with those at Iowa Gulch and 239 

Union Canyon, with a single exposure age from the terminal Pinedale moraine at Twelvemile Creek of 240 

20.6 ± 0.5 ka and two exposure ages at Fourmile Creek with a mean of 21.7 ± 1.6 ka. One significantly 241 

older exposure age of the Fourmile Creek terminal moraine of 61.3 ± 0.6 ka  and a slightly older age of 242 

28.6 ± 1.0 ka on the Twelvemile Creek terminal moraine are interpreted as older outliers, possibly 243 

reworked boulders with 10Be inventory from a period of prior exposure. A single younger exposure age 244 

from a recessional moraine in Fourmile Creek valley of 13.3 ± 0.2 ka is difficult to interpret without 245 

additional data, but may represent a late ice advance in the valley. The age of the only sample taken in the 246 

Sacramento Creek valley, 17.4 ± 1.3 ka, is consistent with those from the recessional moraine in Union 247 

Canyon.   248 

Glacier Reconstructions 249 

The geometries of the reconstructed glaciers (Fig. 2) are summarized in Table 2.  Driving stresses tend to 250 

be low (~50 kPa) in the lower reaches of the reconstructed glaciers (Fig 2b). While not unreasonable, 251 

these most likely represent minimum values given underestimates of ice thickness due to post-LGM 252 

glacial and fluvial valley fill. Extrapolation of the bedrock walls of valley profiles suggests thicknesses 253 

(and therefore driving stresses) could have been as much 10-20% greater than estimated here. 254 

Additionally, in several valleys terminal moraine complexes are characterized by an abundance of ice 255 

disintegration/stagnation features that might also point to low driving stresses. Stresses of ~70 to 150 kPa 256 
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are inferred for mid- and upper reaches of the reconstructed glaciers, the larger values being associated 257 

with steep surface slopes, associated with those of the underlying bedrock, and/or greater ice thickness.  258 

Reconstructions indicate that glacier extent was greatest in the northern Mosquito Range, as noted 259 

previously, and that glaciers were larger on the eastern slope. A full explanation of this east-west 260 

asymmetry is beyond the scope of this work, but could certainly involve the land surface topography and 261 

possible precipitation differences during the last glaciation. An analysis of the hypsometry shows that the 262 

total land area above 3500 m, essentially corresponding to a rough average of equilibrium-line altitudes 263 

(ELAs, discussed subsequently), is almost 40% larger on the eastern side of the range (261 km2 versus 264 

191 km2). While this analysis does not take into consideration slope angles, it nevertheless suggests a 265 

greater extent of areas of potential accumulation for glaciers on the east. Combined with the possibility of 266 

greater precipitation, total accumulation may have been significantly greater as well. 267 

Temperature-index modeling: model verification 268 

The robustness of the TM was evaluated by its ability to simulate modern climate and modern snowpack 269 

evolution at specific localities. It should be emphasized that local temperature and precipitation values are 270 

not explicitly used in the model, but rather determined from regional parameters. Figures 5a and b show 271 

that over the elevations most relevant to paleoglacier extents (~3000-4200 m), simulated temperatures 272 

agree quite well with those observed. Simulated temperatures during the ablation season are most critical 273 

because they drive melting. Temperatures during most of the accumulation season are less critical as these 274 

are well below the threshold for melting. Agreement during the ablation season is quantified by RMSEabl 275 

values that are less than 1 °C. Cumulative temperature differences over the ablation season Σ∆abl are also 276 

low, being less than ±0.5 °C. (Note that positive and negative values indicate the model respectively 277 

overestimates or underestimates a given quantity.) These values are representative of all other stations.  278 

Similarly, the accuracy of modeled precipitation is more important during the accumulation season. 279 

Figures 5c and d (again typical of all stations in the appropriate elevation range) show that the model 280 

provides accurate representations of modern precipitation. Modeled values show less agreement with 281 

observations at Fremont Pass, however this station is somewhat outside the immediate study area. 282 

Climax, located two kilometers closer lies at essentially the same elevation yet receives ~8 cm (12%) less 283 

precipitation annually. Such spatial variability in precipitation is not uncommon (Anderton et al., 2004) 284 

and has been noted elsewhere in the region (Brugger, 2010). The Fremont Pass station notwithstanding, 285 

errors over the accumulation season (RMSEacc) are < 1 cm for all stations between 3000 and 3500 m. 286 

Modeled precipitation on the east side of the Mosquito Range for the four stations of interest yield 287 

cumulative differences (Σ∆acc) in precipitation of ~ ±2.5 cm for the accumulation season (Fig. 5d) On the 288 

western slope, Σ∆acc is between ±4.0 cm (three stations; data from the Leadville stations were averaged).  289 
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Perhaps the most stringent criteria to test the TM is how well it simulates modern snow accumulation 290 

and snowpack evolution (in w.e.) recorded in SNOTEL records (Figs. 5e and f) because this is most 291 

closely related to the goal of simulating glacier mass-balance. Simulations of the three SNOTEL records 292 

on the eastern side of the range are quite good with due consideration of, among others: (1) temporal 293 

differences in resolution (daily versus monthly in the model); (2) possible wind drifting or deflation of 294 

snow at observations sites (Meyer et al., 2012); (3) the effects of a tree canopy on local accumulation and 295 

ablation (Varhola et al., 2010). These factors can result in measured snow water equivalents at SNOTEL 296 

sites that are not representative of their surroundings (Molotch and Bales, 2005). Nevertheless, RMSE 297 

values (October-June/July) are less than 4.5 cm w.e. Because these reflect in part differences in temporal 298 

resolution, the differences (∆snow) in the maximum snow water equivalent might provide another metric of 299 

the ability of the TM to simulate snow accumulation. ∆snow values ranged from –1.6 cm w.e. at the Rough 300 

and Tumble site to +4.1 cm w.e. at the Buckskin site (Fig 5f). Similar comparisons on the western slope 301 

of the Mosquito Range are problematic. Figure 5e shows that the model simulates less well the record at 302 

the Fremont Pass site (RMSE = 8.9 cm w.e., ∆snow = –9.7 cm w.e.), the only SNOTEL on the west side of 303 

the range. However, this is an artifact of the inability of the model (and the inherent precipitation 304 

gradients used) to accurately simulate modern precipitation at this location as noted previously. 305 

Therefore, a “synthetic” record of snow accumulation at the Climax site was created by using cumulative 306 

(monthly) snow depths there and determining the mean density for late fall through early spring snowfall 307 

using data available for Fremont Pass. Agreement between the model and the synthetic record is better 308 

(RMSE = 3.0 cm w.e., ∆snow = +7.9 cm w.e.), especially allowing for uncertainties in assumed snow 309 

density (Fig. 5e).  310 

Varying mƒ by ±0.2 cm w.e. d-1 °C-1 results in a change in maximum snowpack(s) by no more than 311 

±3%. The only significant impact of this variation is to alter the length of time snow persists into the 312 

spring/summer (see for example the Hoosier Pass record in Fig. 6f). Changing the threshold temperature 313 

for melt (Tm in Equation (3)) to 0°C reduces maximum snowpack(s) by only a maximum of ~3% at all 314 

sites.  315 

Temperature-index modeling: inferring Late Pleistocene glacial climate 316 

Climate during the last glaciation is determined by finding the temperatures and/or precipitation that 317 

satisfy: 318 

 U. = -.9V	 ≈ -.XVY
P

YZB
= 0

	

[
 (6) 319 

where Bn is the steady-state mass-balance, A is glacier area composed of j number of discrete elevation 320 

intervals, and -.X is the mean annual specific net-balance over Ai. We emphasize that Equation (6) 321 

explicitly considers glacier hypsometry. However, solving Equation (6) presents the problem of 322 
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equifinality, that is there are an infinite number of solutions that satisfy the condition Bn = 0. Therefore, 323 

reasonable limits must be imposed on assumed temperature-precipitation combinations.  324 

With regard to the foregoing, the most straightforward assumption is that precipitation during the last 325 

glaciation was comparable to that today (i.e. F = 0 (Equation (5)). Under this assumption, simulations 326 

suggest temperature depressions between 7.9 and 8.2 °C are required to maintain steady-state mass 327 

balances of glaciers on the east side and between 7.4 and 7.7 °C on the west side of the Mosquito Range 328 

(Table 4). The respective averages are 8.1 ± 0.3 °C and 7.5 ± 0.2 °C. Uncertainties for individual 329 

estimates of temperature depression were +0.8 and –0.9 °C based on sensitivity analysis of the TI model 330 

(see Supporting Information for a complete analysis).  331 

The associated ELAs are consistently lower on the east than on the west side of the range, averaging 332 

~3485 ± 30 m and 3575 ± 25 m respectively. Average ELAs determined using the accumulation-area ratio 333 

method (AAR = 0.65) are lower than their simulated counterparts by ~10 to 45 m but show a similar 334 

consistency (Table 4). Lower ELAs on the east side of the range might also suggest that differences 335 

between precipitation on the eastern and western slopes of the Mosquito Range similar to those today 336 

existed during the last glaciation. This is discussed further in a subsequent section. 337 

Whether precipitation during the last glaciation differed from that of today is more challenging to 338 

assess because the Colorado Rocky Mountain region lacks paleoclimate proxies that might constrain 339 

precipitation. Moreover, despite their resolution, global and regional climate simulations of the last 340 

glaciation from model ensembles suggest only slight changes in precipitation in this region and are 341 

equivocal whether climate was wetter or drier (e.g. Braconnot et al. 2007; Oster et al., 2015; Lora et al., 342 

2017). Differences in precipitation are also indicated by climate reconstructions using pollen-based 343 

proxies (Izumi and Bartlein, 2016). Thus it is prudent to consider scenarios in which the last glaciation in 344 

the Mosquito Range was wetter or drier.  345 

 Figure 6 shows the effect of potential changes in precipitation on the temperature depression required 346 

for steady-state glacier mass-balances. Not surprisingly, greater/smaller temperature depression (i.e. 347 

less/more ablation) must be offset by concomitant reductions/increase in precipitation (less 348 

accumulation). Given the magnitudes suggested by paleoclimate reconstructions for western North 349 

America (Kim et al., 2008; Ibarra et al., 2014; Oster et al., 2015; Lora et al., 2017), we allow annual 350 

precipitation to vary slightly by ± 10 cm. Changes of this magnitude are ±15-25% of modern MAP values 351 

(depending on location and elevation) and therefore might be considered too great. Table 4 and Figure 6 352 

show that under slightly wetter conditions the required temperature depressions are 7.5 ± 0.3 °C for the 353 

eastern side and 7.0 ± 0.2 °C for the western side of the range. If the last glacial climate was slightly drier, 354 

the corresponding temperature depressions are 8.9 ± 0.3 and 8.0 ± 0.2 °C respectively. Assuming 355 
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arguably extreme changes in precipitation, say +50 cm and –20 cm — not supported by any studies of 356 

which we are aware — the required temperature depressions might have been between ~5.6 and 9.9 °C 357 

(Fig. 6). (Note that reductions in precipitation by more than 20 cm are precluded as this results in no 358 

precipitation at lower elevations.) 359 

Discussion  360 

Chronology of glacial deposits 361 

On the Bull Lake moraine segment in Iowa Gulch, the mean of two 10Be ages is 130 ± 5 ka after 362 

allowing for a reasonable rate of rock erosion (1 mm kyr-1). Schweinsberg et al. (2017), using the same 363 

erosion rate and a similar cosmogenic-isotope production scaling model, obtained a mean age of 132 ± 8 364 

ka for four boulders on a Bull Lake-aged moraine fronting the Lake Creek Valley on the eastern side of 365 

the Sawatch Range (TL on Fig. 1b). Unfortunately, there are few other exposure ages for comparably-366 

aged moraines elsewhere in Colorado. Benson et al. (2004) found anomalously young 36Cl ages on four of 367 

five Bull Lake boulders in the Park and Front Ranges that were attributed to combination of erosion, 368 

snow and sediment shielding, and 36Cl leakage. The fifth yielded a zero-erosion, shielding uncorrected 369 

age of ~144 ka (original value). Dethier et al. (2000) reported minimum mean 10Be and 26Al ages of 101 ± 370 

21 ka and 122 ± 26 ka (original values) on Bull Lake moraines in the Front Range. Schildgen at al. (2002) 371 

dated an associated Bull Lake terrace at 133 ± 28 10Be ka and 139 ± 31 26Al ka (original values). The 372 

younger minimum ages notwithstanding, these age estimates are in good agreement and indicate broad 373 

regional synchrony of glacial advances during MIS 6.   374 

Exposure ages obtained on Pinedale-age (MIS 2) terminal moraines in the Mosquito Range (Table 3) 375 

span an interval from 22.8 ± 0.2 to 19.0 ± 0.6 ka. Five overlapping ages (Fig. 7a) yield a mean age of 20.9 376 

± 0.4 ka. Alternatively, inclusion of the oldest and youngest ages yields an identical mean age of 20.9 ± 377 

1.1 ka. The probability density plot shows a dominant peak at 20.6 ka. Several authors (e.g. Applegate et 378 

al., 2010; Heyman et al., 2011; Leonard et al., 2017b) have pointed out that the ages (mean, distribution, 379 

and so forth) of moraine boulders can be interpreted differently. We follow Leonard et al. (2017b) and 380 

numerous other studies by using the mean exposure age to indicate the timing of moraine abandonment 381 

following the maximum ice extent, while at the same time providing a minimum age for the Pinedale 382 

maximum. Thus we argue that the last glaciation in the Mosquito Range culminated at ~20–21 ka during 383 

the latter part of the global Last Glacial Maximum (26.5 to 19.0 ka; Clark et al., 2009). This timing is 384 

consistent with the conclusions of a recent review of available cosmogenic exposure ages in Colorado by 385 

Leonard et al. (2017b) wherein they showed that individual valley glacier maxima generally occurred 386 

prior to ~19.5 ka.   387 
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Leonard et al. (2017b) also concluded that retreat or abandonment of terminal moraines in Colorado 388 

was asynchronous, possibly well underway at ~17–16 ka in the San Juan Mountains and Front Range, 389 

while glaciers remained at or near their maximum extents in the Sawatch Range and Sangre de Cristo 390 

Mountains at that time. The younger 10Be ages on the recessional moraine in Union Canyon (Fig. 4) 391 

suggest that, at least in this valley, glaciers were close to their maximum extent at ~17 ka suggesting a 392 

similar early deglaciation history in the Mosquito Range as those in the immediately adjacent ranges. This 393 

apparent asynchronous response across the region begs the question as to what climatic conditions and/or 394 

dynamic factors allowed glaciers to persist at or nearly maximum extents in some glacial valleys and not 395 

others. Asynchronous glacier maxima in the Sawatch Range was reported by Young et al. (2011), who 396 

suggest that differences in glacier shape, aspect, and hypsometry may have resulted in temporal 397 

differences in valley glacier advance and retreat during the last glaciation. It is worth noting, however, 398 

that more extensive ice in the Sawatch Range, the Sangre de Cristo Mountains and Mosquito Range at 399 

~17 ka is coeval with glacier maxima and/or readvances documented in other glaciated ranges in the U.S. 400 

Rocky Mountains as further discussed below.  401 

Glacial chronology and regional climate 402 

The Pinedale maximum in the Mosquito Range at 21–20 ka was coincident with an insolation 403 

minimum (Fig. 7g) and cooler Northern Hemispheric temperatures (Fig. 7b). It corresponded to the global 404 

LGM (Clark et al., 2009; Lisiecki and Raymo, 2005), the time when southern outlets of the Laurentide 405 

Ice Sheet were at their maximum extent (Ullman et al., 2015), and with mountain glacier maxima 406 

elsewhere in the Rocky Mountains of Utah (Laabs et al., 2009; Quirk et al., 2018) and Wyoming (Dahms 407 

et al., 2018).  This time interval also featured wetter and/or cooler winters reflected in speleothem records 408 

from the southwestern U.S. (Fig. 7d-f). Paleohydrologic studies (Ibarra et al., 2014; 2018) indicate 409 

minimal increases in LGM precipitation in the northern Great Basin (at latitudes greater than the 410 

Mosquito Range) but much greater increases at latitude similar to the Mosquito Range, suggesting the 411 

latter proxies may reflect precipitation increases during the Pinedale Maximum.  412 

Extensive ice at 17 ka is coeval with glacier maxima in the nearby Sangre de Christo Range (Leonard 413 

et al., 2017a) and Sawatch Range (Young et al., 2011; Schweinsberg et al., 2016) and with glacier 414 

readvances to near maximum lengths in the Wasatch and Uinta Ranges of the Middle Rocky Mountains 415 

(Laabs and Munroe, 2016; Quirk et al., 2018), and maximum extents of several outlet glaciers of the 416 

Greater Yellowstone Glacial System (Licciardi and Pierce, 2008, 2018; their “middle Pinedale). The 417 

potential driver of glacier readvance or persistence near their maximum lengths may be related to regional 418 

precipitation changes following the LGM (e.g., Thackray et al., 2004; Thackray, 2008). This is consistent 419 

with the observed highstands of many of the pluvial lakes in the Southwestern U.S. at 17-16 ka (Fig. 7c; 420 

Munroe and Laabs, 2013), coeval wetter and/or cooler conditions as revealed by speleothem records (Fig. 421 
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7d-f; Wagner et al., 2010; Asmerom et al., 2010; Moseley et al., 2016) and reconstructed lake highstands 422 

(Lyle et al., 2012; Ibarra et al., 2014; 2018) following the initial phase of deglaciation. The timing of 423 

these events falls within the Heinrich Stadial 1 (ca. 18-15 ka; Figs. 7 and 8) that is associated with a 424 

hemispheric cooling owing to a weakening of the Atlantic Meridional Overturning Circulation (McManus 425 

et al., 2004). However, regional asynchrony of deglaciation and in the highstands of some pluvial lakes 426 

(Munroe and Laabs, 2013; Ibarra et al., 2014) implies a degree of local modulation of hemispheric 427 

climate forcing(s). 428 

Last glacial climate in the Mosquito Range 429 

Our results suggest that in the absence of any changes in precipitation, temperatures in the Mosquito 430 

Range were between 7.5 and 8.1 °C cooler during the Pinedale maximum compared to modern. 431 

Considering the uncertainty (+0.8/–0.9°C), these values agree and one could conclude there was no 432 

significant difference in temperature depression with respect to the eastern and western slopes. In detail, 433 

however, the difference is largely an artifact of those in modern, and presumed last glacial precipitation. 434 

This begs the question as to whether temperature depression could have differed over the range. A 435 

reasonable assumption is that regional temperature was more uniform than precipitation. If an average 436 

glacial temperature depression of 7.8 °C for the whole of the Mosquito Range is assumed, a precipitation 437 

increase of ~5 cm over modern is required on the eastern side of the range while a decrease of similar 438 

magnitude is required on the western side (Fig. 6). This outcome therefore suggests that the difference in 439 

precipitation across the range observed today was somewhat accentuated during the last glaciation. 440 

Independent estimates of ELAs based on the AAR method (Table 4) that are consistently lower on the 441 

eastern side of the range compared to the western side might also point to differences in precipitation. 442 

Refsnider et al. (2009) noted a similar cross-range difference in ELAs in the Sangre de Cristo Mountains 443 

~100 km to the south. They attributed this to an enhancement of late winter/early spring southeasterly-444 

derived (Gulf of Mexico) moisture that would have preferentially nourished glaciers on the eastern slopes. 445 

We offer this as a viable explanation for the apparent east-west differences in Late Pleistocene glacial 446 

temperature depression obtained by our simulations. This conclusion is consistent with the fact that 447 

modern winter precipitation – presumably therefore snow accumulation – is greater on the eastern slopes 448 

of the Mosquito Range due to late winter/early spring events. 449 

Interestingly, a high-resolution paleoclimate simulation for North America (Kim et al., 2008; their 450 

Fig. 8) indicates a sharp east-west gradient in LGM winter precipitation (December-February in their 451 

study) in the general region of the study area. Their simulation suggests that this gradient arises by a 452 

combination of increases over modern precipitation in the east and decreases in the west, and by 453 

magnitudes greater than those implied by our simulations. Thus our conclusion that the present difference 454 
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in winter precipitation across the Mosquito Range not only existed during the last glaciation, but was 455 

could have been more pronounced, is not unreasonable. Moreover, if the North American summer 456 

monsoon strengthened (cf. Lachniet et al., 2013; Bhattachary et al., 2017), then greater increases in 457 

precipitation on the eastern slopes that would fall as snow at higher elevations, would have further 458 

increased accumulation differences across the range.  459 

Our average estimate of glacial temperature depression of 7.8 +0.8/–0.9 °C in the Mosquito Range 460 

compares favorably with estimates elsewhere in the Colorado Rocky Mountains (Table 5). (Unless, 461 

otherwise indicated, subsequent comparisons assume no significant changes in precipitation.) Brugger 462 

(2010), using a slight variation of the TM used in the present study, found MATs were on average 6.9 ± 463 

0.6 °C cooler for the southern Sawatch Range and Elk Mountains to the west. In the same area, Brugger 464 

and Goldstein (1999) suggested a temperature depression of 7.0–9.0 °C based on climatic interpretation 465 

of lowered ELAs. Preliminary TM simulations (Brugger et al., 2017) suggests a LGM temperature 466 

depression of ~6.2 and ~7.5 °C to maintain glaciers in the northern Sawatch Range, immediately to the 467 

west of the study area. Refsnider et al. (2009) concluded that mean summer temperatures in the Sangre de 468 

Cristo Mountains in southern Colorado were ~6.0–7.5 °C cooler, varying according to assumed changes 469 

in precipitation. In a sub-region of those same mountains, the Blanca Massif, Brugger et al. (2009) 470 

suggested 7.0–8.0 °C of cooling based on TM simulations. In contrast, Leonard et al., (2017a) using a 471 

coupled energy-mass balance-flow model, determined that LGM temperatures were ~5.0 +1.5/–1.0 °C 472 

cooler in the Sangre de Cristo Mountains. Leonard and Russell (in Schweinsberg, et al., 2016) applied the 473 

same approach and determined temperatures were depressed 5.4 °C in the northern Sawatch. Dühnforth 474 

and Anderson (2011), who employed a numerical model of glacier flow with parameterized mass-balance 475 

components, found that temperatures were between 4.5 and 5.8 °C cooler in Front Range, farther afield to 476 

the northeast. In a broader regional study based on climate at equilibrium-lines, Leonard (1989) 477 

concluded temperatures in Colorado were ~8.5 °C cooler. Leonard (2007) later used this approach within 478 

a GIS-based model and concluded that Late Pleistocene glaciers in central Colorado would have required 479 

an average temperature depression of 7.6 ± 0.7 °C.  480 

The relatively small disparities in estimates of last glacial temperature depression are undoubtedly 481 

due in part to differences in the methodologies used, and they are perhaps smaller than they first appear 482 

when considering the associated uncertainties (when reported). There are, however, other potential 483 

explanations that might either wholly or partially reconcile these differences. First, LGM temperature 484 

depression during the Pinedale maximum might have indeed vary throughout the region; that is, an a 485 

priori assumption that regional temperature (and precipitation) change during the Pinedale was uniform 486 

and not modulated by local, or microclimatic influences is questionable. Climate simulations of the LGM 487 

indicate changes in MATs in the specific geographic areas referenced above were between ~ –8.0 and –488 
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10.0 °C (e.g. Paleoclimate Modeling Intercomparison Project 3 ensemble means, Oster et al., 2015, 489 

Supplementary Table S-9; Community Climate System Model (CCSM) 3, Lorenz et al., 2016; CCSM4, 490 

data available at WorldClim - Global Climate Data, http://www.worldclim.org). While these results 491 

appear to corroborate the idea that temperature change during the Pinedale maximum might have varied 492 

somewhat, the stated 1σ ~ ±2.9 °C associated with these means precludes any definite conclusion.  493 

The foregoing methodologies also depend on the extents of paleoglaciers delineated by terminal 494 

moraines and their precise relationship with regional climate. Addition complications in directly 495 

comparing derived temperature depression can be therefore introduced by virtue of potential ambiguities 496 

in the relationships among/between climate forcing(s), glacier response, and interpretations of moraine 497 

ages (Kirkbride and Winkler, 2012). A full discussion of these is beyond the scope of this study, rather 498 

they are outlined here in order to provide a context for comparing the timing and magnitude of glacial 499 

cooling in the Colorado Rocky Mountains. In short, the Pinedale maximum (used here in the strict sense 500 

of the timing of maximum downvalley glacier extent) might have been time-transgressive (Young et al., 501 

2011) and spatially variable owing to (1) microclimates modulating regional/global climate differently so 502 

local forcings were asynchronous; (2) differences in valley glacier response times (e.g. Pelto and 503 

Hedlund, 2001; Brugger, 2007a) related to glacier hypsometries, (Young et al., 2011; Chenet et al., 2010) 504 

or valley topography (Pratt-Sitaula et al., 2011) that led to asynchronous behavior; and/or (3) maximum 505 

glacier extent is not indicative of the mean glacial climate but rather a reflection of a single, transient 506 

response(s) to stochastic interannual variations in temperature (Anderson et al., 2014). Therefore, 507 

attaching inordinate significance to minor differences in estimates of LGM temperature depression should 508 

perhaps be avoided. 509 

Conclusions  510 

 Moraine boulder 10Be surface exposure ages in four valleys in the Mosquito Range reveal that terminal 511 

moraine deposition occurred during MIS 6 and MIS 2. During the Pinedale Glaciation, valley glaciers 512 

were at or near their maximum extents ~21–20 ka. Exposure ages of boulders on a recessional moraine 513 

suggest that ice retreat was under way by ~17 ka. Temperature-index modeling suggests that during the 514 

Pinedale maximum, steady-state mass balances of glaciers on the east side of the range required 515 

temperatures that were on average 8.1 °C less than modern, assuming no change(s) in precipitation. 516 

Glaciers on the west side of the range existed under temperatures 7.5 °C cooler. Given uncertainties of 517 

+0.8/–0.9 °C, a glacial temperature depression of 7.8 °C is implied. Under the assumption that 518 

temperature depression was uniform over the Mosquito Range, precipitation differences that exist today 519 

across the range might have been enhanced during the last glaciation, potentially by strengthening of the 520 
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North American summer monsoon. If precipitation increased or decrease slightly (± 10 cm) as suggested 521 

by some climate reconstructions, temperature depression could have been between 7.0 and 8.9 °C.    522 

Within the bounds of uncertainties, the new chronology for the last glaciation in the Mosquito Range 523 

presented here is in good agreement with those developed for the northern Sawatch Range and Elk 524 

Mountains, the Front Range, the Sangre de Cristo Mountains, and the San Juan Mountains. The timing of 525 

the LGM in the Colorado Rocky Mountains thus appears to have been broadly synchronous and driven by 526 

regional cooling and perhaps slight enhancements in winter precipitation. In contrast, initial deglaciation 527 

was asynchronous, beginning first in the Front Range and San Juan Mountains and later in the Mosquito 528 

Range, Sawatch Range, and Sangre de Cristo Mountains. 529 

Our estimate(s) of temperature change in the Mosquito Range during the Pinedale maximum is also 530 

consistent with those similarly-derived for other mountain ranges in Colorado and with those based on 531 

climate at ELAs. Furthermore, it is consistent with temperature depressions inferred from regional-scale 532 

modeling of LGM paleoclimate. Differences exist, however, between our estimate and those based on 533 

coupled glacier flow-mass-balance models that yield temperature depressions on the order of 5–6 °C. 534 

These differences, while possibly real, are small considering the associated quantifiable uncertainties in 535 

the approaches used combined with the possibility of spatially varying changes in LGM precipitation. 536 
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FIGURES 749 
Figure 1. (a) Location of the study area and surrounding mountain ranges. Area outlined in white is that 750 
shown in (b). (b) Stations used for modern climate data. Abbreviations: AV Arkansas Valley, BJ 751 
Buckskin Joe, BV Buena Vista, C Climax, F Fairplay, EM Elks Mountains, FP Fremont Pass, HP Hoosier 752 
Pass, JH Jones Hill, Leadville (2 stations), MC Michigan Creek, RD Red Deer, RT Rough and Tumble, S 753 
Salida, SL Sugarloaf Reservoir, SP South Park, SR Sawatch Range, and TL Twin Lakes Reservoir. 754 
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Figure 2. (a) Reconstructed glaciers of the Mosquito Range during their maximum Pinedale extent. A 768 
more detailed example is shown in (b). Locations of moraine complexes sampled for surface exposure 769 
dating are also shown in (a) and correspond to the areas shown in Figure 4.  770 
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Figure 3. (a) Monthly distribution of precipitation at similar high and low elevations on the eastern and 777 
western slope of the Mosquito Range. Leadville data is a composite of two records. (b) Variation of 778 
winter precipitation with elevation on the eastern and western slopes of the Mosquito range. Two 779 
regressions are shown for the western side, one with and one without the Fremont Pass SNOTEL (FP) 780 
data. See text for discussion. 781 
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Figure 4. Locations of moraine boulders sampled for cosmogenic exposure dating and 10Be ages (ka) in 797 
(a) Iowa Gulch, (b) Union Canyon, (c) Twelvemile Creek, and (d) Sacramento Creek and (e) Fourmile 798 
Creek. Moraine extents and ice margins are simplified and approximate. As noted in the text, boulders 799 
appropriate for sampling on several of the moraines were very scarce.  800 
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Figure 5. Comparison of modeled (a and b) monthly temperature, (c and d) monthly precipitation, and (e 814 
and f) snowpack evolution with observed records at various location in or near the study area. Shaded 815 
areas in (a-d) highlight the ablation and accumulation seasons respectively. In (e) the shaded area in the 816 
synthetic record for snowpack evolution at the Climax site shows possible range based on assumed snow 817 
density.  In (f) the uncertainly associated with mf values (dashed lines) is only shown for the Hoosier Pass 818 
site. See text for discussion.  819 
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Figure 6. Combinations of temperature depression and changes in precipitation required to maintain 828 
steady-state mass balances of paleoglaciers at their maximum Pinedale extents. Mean values for glaciers 829 
on on eastern and western slopes are shown; standard deviation for each is ± 0.3 °C. The shaded area 830 
represents the more likely conditions in the region of the study area based on climate reconstructions. See 831 
text for discussion. 832 

 833 
 834 
 835 
 836 
Figure 7. (a) Probability density plots of 10Be ages 837 
for individual moraines and composite for all 838 
samples shown.  Uncertainties shown reflect 1σ 839 
internal uncertainty. (b) North Greenland Ice 840 
Project ice core record of δ18O variations with 841 
GICC05 chronology (LOESS smoothed; 842 
Rasmussen et. al, 2006). (c) Timing of the 843 
dominant highstand of pluvial lakes in the Great 844 
Basin (Munroe and Laabs, 2013). δ18O variation 845 
from (d) Cave of the Bells, AZ (Wagner et al., 846 
2010), (e) Fort Stanton Cave, NM (Asmerom et al., 847 
2010), and (f) Devils Hole, NV (Moseley et al., 848 
2016). (g) January and July insolation anomaly at 849 
39° N (Berger, 1992). Vertical gray bars are the 850 
Heinrich Stadial (H1; taken here as ~18-15 ka) and 851 
the Younger Dryas (YD) event.   852 
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Table 1. Modern climate data* used in the model and derived values. 862 

 Station† Elevation (m)  Mean Temperatures (°C) Precipitation (cm)  863 
 Annual Tjul Tjan H Mean annual Seasonal  864 
     (Tjul - Tjan) W S S F 865 
East slope 866 
 Jones Hill 2911 5.3 16.8 –3.9 20.7 34.3 2.4 7.8 18.8 6.2 867 
 Fairplay 3051     39.8 6.4 10.4 14.8 8.1  868 
 Rough and Tumble‡ 3158 2.9 12.9 –6.3 19.2 51.6 8.4 16.8 16.0 10.4 869 
 Michigan Creek 3230 1.9 12.1 –6.4 18.5 870 
 Buckskin Joe‡ 3399     70.4 15.2 18.9 20.1 16.2  871 
 Hoosier Pass‡ 3475 0.3 10.3 –9.4 19.7 74.7 16.8 24.2 16.9 16.8 872 
 Mean value     19.5 873 
  dTjan/dz (°C m-1) = –0.0098 dPmod/dz (cm m-1) = 0.026 0.027 0.003 0.020 874 
   r2 = 0.95  0.99 0.93 0.13 0.99  875 
West slope 876 
 Salida‡ 2182 7.4 19.2 –3.1 22.3  877 
 Buena Vista‡ 2422 6.9 18.7 –3.4 22.1 878 
 Red Deer 2682 5.7 16.8 –3.6 20.4 26.6 1.3 8.0 11.1 6.2 879 
 Twin Lakes‡ 2804 3.1 14.7 –7.3 22.0 25.2 3.2 5.7 10.5 5.8 880 
 Sugarloaf Reservoir‡ 2969 2.2 13.7 –7.6 21.3 41.7 8.4 10.5 13.5 9.4 881 
 Leadville 2SW 3031 1.6 12.7 –8.4 21.1 29.4 5.5 6.7 11.0 6.2 882 
 Leadville 3088 1.7 13.3 –8.3 21.6 33.7 9.3 8.3 9.4 6.6 883 
 Climax‡ 3461 –0.8 11.1 –10.2 21.3 60.9 14.4 16.9 15.9 13.7 884 
 Fremont Pass‡ 3475 –1.2 10.0 -11.0 21.0 69.3 18.3 21.2 14.0 15.8 885 
 Mean value     21.5 886 
  dTjan/dz (°C m-1) = –0.0065 dPmod/dz (cm m-1) = 0.019 0.017 0.005 0.012 887 
   r2 = 0.91  0.95 0.81 0.60 0.84  888 
* Different subsets of data were excluded from derivations of lapse rates dTjan/dz and vertical precipitation gradients 889 
dPmod/dz owing to (1) lack of data, (2) being extreme outliers and/or poor quality, or (3) inappropriate geographic 890 
location or elevation. Precipitation data is less inclusive under the assumption that precipitation is more variable 891 
over the region for than is temperature for given elevation. 892 
†Location and station type shown in Fig. 1. 893 
‡1981-2010 climate norm.894 
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Table 2. Summary of geometric parameters associated with the reconstructed glaciers. 895 

Glacier Area Length* Average Maximum 896 
 (km2) (km) thickness† thickness†  897 
   (m) (m) 898 
East slope 899 
 Twelvemile 20.6 8.0 90 130 900 
 Fourmile 29.1 13.9 135 170 901 
 Sacramento 33.5 14.4 135 205 902 
 South Platte (glacier complex: 113.5 23.3 210 300 903 
  Mosquito, Buckskin, 904 
  and Middle Fork of the 905 
  South Platte glaciers) 906 
West slope  907 
 Empire 9.2 7.8 100 140 908 
 Iowa 14.7 11.0 130 175 909 
 Evans 18.1 9.4 115 155 910 
*Longest flowline 911 
†Nearest 5 m 912 
 913 
Table 3. Cosmogenic 10Be exposure ages of moraines (see Supporting Information for details). 914 

Valley/Sample ID 10Be exposure age (ka) Internal uncert. (ka) External uncert. (ka) 915 
Union Canyon    916 
 UC-03-16 16.7 0.4 0.8 917 
 UC-04-16 17.2 0.6 0.9 918 
 UC-01-16 17.5 0.5 0.8 919 
 UC-02-16 20.1 0.5 0.9 920 
Twelvemile Creek    921 
 TMC-01-16 20.6 0.5 1.0 922 
 TMC-02-16 28.6 1.0 1.5 923 
Iowa Gulch    924 
 Pinedale terminal    925 
 IG-04-16 19.0 0.6 1.0 926 
 IG-05-16 20.8 0.6 1.0 927 
 IG-06-16 21.2 0.5 0.9 928 
 IG-03-16 21.3 0.6 1.0 929 
 Bull Lake terminal1    930 
 IG-02-16 133.2 3.2 6.6 931 
 IG-01-16 126.9 4.0 6.8 932 
Fourmile Creek    933 
 FMC-1-2015 13.3 0.2 0.5 934 
 FMC-2-2015 20.5 0.3 0.8 935 
 FMC-3-2015 61.3 0.6 2.4 936 
 FMC-4-2015 22.8 0.2 0.9 937 
Sacramento Creek    938 
 SC-1-16 17.4 1.3 1.4  939 
1Assumed erosion rate of 1 mm/kyr.   940 
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Table 4. Inferred LGM temperature depression based on temperature-index simulations.  941 

Paleoglacier ∆T (°C) ELA* (m) 942 
 F = –10 cm F = 0 cm F = +10 cm Steady-state AAR-derived 943 

East slope 944 
 Twelvemile –9.3 –8.5 –7.9  3445  3420 945 
 Fourmile –8.7 –7.9 –7.3  3505  3480 946 
 Sacramento –8.6 –7.9 –7.3  3510  3500 947 
 South Platte –8.9 –8.2 –7.6  3480  3435 948 
 Means ± standard deviation –8.9 ± 0.3 –8.1 ± 0.3 –7.5 ± 0.3  3485 ± 25  3460 ± 40 949 
West slope 950 
 Empire –7.9 –7.4 –6.9 3590 3555 951 
 Iowa  –7.9 –7.4 –6.9 3590 3560 952 
 Evans  –8.2 –7.7 –7.3 3545 3520 953 
 Means ± standard deviation –8.0 ± 0.2 –7.5 ± 0.2 –7.0 ± 0.2 3575 ± 25 3545 ± 20 954 

*For F = 1.0 only; nearest 5 m. 955 

 956 

 957 
Table 5. Regional estimates of LGM temperature depression. 958 

Location* Temperature Methodology† Reference 959 
 depression, °C** 960 

Mosquito Range 7.5 - 8.2  TI This study  961 
Northern Sawatch Range 6.2 - 7.5 TI Brugger et al., 2017; in prep 962 
Sawatch Range/Elk Mountains    6.9 ± 0.6 TI Brugger, 2010 963 
Sawatch Range/Elk Mountains 7.0 - 9.0 ELA Brugger and Goldstein, 1999 964 
Sangre de Cristo Mountains 5.0 +1.5/-1.0 EBFM Leonard et al., 2017a 965 
Sangre de Cristo Mountains 6.0 - 7.5 ELA Refsnider et al., 2009 966 
Sangre de Cristo Mountains 7.0 - 8.0 TI Brugger et al., 2009 967 
Front Range 4.5 - 5.8 FM Dühnforth and Anderson, 2011 968 
Colorado Rocky Mountain region 7.6 ± 0.7 ELA Leonard, 2007 969 
Colorado Rocky Mountain region 8.5 ELA Leonard, 1989 970 

*Locations shown in Figure 1. 971 
**Assuming no change in precipitation. 972 
†TI = temperature-index model; ELA = climatic interpretation at glacier ELAs; EBFM = coupled energy-balance 973 

and glacier flow model; FM = flow model 974 
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