University of Minnesota Morris Digital Well University of Minnesota Morris Digital Well

Chemistry Publications

Faculty and Staff Scholarship

Spring 2015

Study of the Protonation States of the Curcumin Molecule and Their Visible Absorption Spectra in Aqueous Solution Using M06, SMD, and TDDFT and Compared to Experiment

Joseph D. Alia University of Minnesota - Morris, aliaj@morris.umn.edu

Peter Braegelmann

Timothy Roettgen

Hannah Goemann

Follow this and additional works at: https://digitalcommons.morris.umn.edu/chem_facpubs

Part of the Chemistry Commons

Recommended Citation

Alia, Joseph D.; Braegelmann, Peter; Roettgen, Timothy; and Goemann, Hannah, "Study of the Protonation States of the Curcumin Molecule and Their Visible Absorption Spectra in Aqueous Solution Using M06, SMD, and TDDFT and Compared to Experiment" (2015). *Chemistry Publications*. 15. https://digitalcommons.morris.umn.edu/chem_facpubs/15

This Conference Proceeding is brought to you for free and open access by the Faculty and Staff Scholarship at University of Minnesota Morris Digital Well. It has been accepted for inclusion in Chemistry Publications by an authorized administrator of University of Minnesota Morris Digital Well. For more information, please contact skulann@morris.umn.edu.

Study of the protonation states of the curcumin molecule and their visible absorption spectra in aqueous solution using M06, SMD, and TDDFT and compared to experiment.

Joseph D. Alia, Peter Braegelmann, Timothy Roettgen, and Hannah Goemann

Division of Science and Mathematics University of Minnesota, Morris 600 E 4th St, Morris, MN 56267

Abstract: Curcumin, the primary natural dye from the spice turmeric, has been of recent interest due to its possible health benefits as an antioxidant and possible anti cancer and anti Alzheimer's properties. Limited solubility and instability in water are of primary importance when considering curcumin's possible uses as a pharmaceutical. DFT computations were carried out using B3LYP and MO6 density functionals and the SMD solvent model for water. TDDFT computations were carried out on geometries optimized in water as described by the SMD solvent model. It is found that M06 with the 3-21G^{*} basis set and SMD solvent model gives accurate λ_{max} values though the larger 6-31+G* basis set is needed for accurate description of the trianionic protonation state. The 6-31+G^{*} basis set is also needed for accurate computation of pKa values. The particle-in-a-box model gives unexpectedly good agreement with computational λ_{max} values when delocalization of phenolic lone pair electrons are appropriately considered in the different protonation states and box lengths from optimized geometries are used. This gives a simple model of how the electronic structure of curcumin is influenced by protonation state and is in good agreement with both computation and experiment.

Outline

- Curcumin
- Protonation states, their λ_{max} and pKa
- Computational goals and details
- Results
- Particle-in-a-box application
- Conclusions

R. Sharma et al., European Journal of Cancer, 41, 2005, 1955-1968

curcumin

- Yellow dye from the spice turmeric
- Beautiful yellow color in curries.
- Keto-enol tautomers
- Five protonation states with different solubility, λ_{max} , and kinetic stability
- Of pharmacological interest ^{a,b}

^a S. Angela et al., Int. J of Clin Pharmacol Ther 2015, 53(1) 54-65. ^b R. Sharma *et al.*, European Journal of Cancer, 41, 2005, 1955-1968.

Molecular structure of curcumin

Enol-keto tautomers favored according to NMR

enol - keto tautomers

diketone

- Enol-keto favored in DCCl₃ and DMSO-d₆, CD₃OD, D₂O, H₂O buffered mixtures from pH 3-9 (¹³C and ¹H NMR techniques.^a)
- Enol-keto tautomers favored in solid state.^b
- Enol-keto tautomers favored in gas phase and methanol medium^c (B3LYP/6-311G**)

^a Payton *et al., Journal of Natural Products*, 2007, 70(2), 143-146.

^b Parimita et al., Acta Cryst. 2007, E63, 860-862.

^c R. Benassi et al., Journal of Molecular Structure 892, 2008 168-176.

Protonation states in solution of given pH

D. Dyrssen, Y. Novikov, L. Uppstrom, Anal. Chim. Acta, 60, 1972, 145

Experimental aqueous pKa

species	рКа						
	UV-vis	UV-vis	Potentiometric titratoin	HCl titration			
H ₃ Curr	8.38 ^a	8.55 ^b	8.54 ^b	8.38 ^b			
H ₂ Curr ¹⁻	9.88 ^a		9.30 ^b	9.88 ^b			
HCurr ²⁻	10.51ª	10.41 ^b	10.69 ^b	10.51 ^b			

^aM. Bernabe-Pineda et al., Spectrochimica Acta Part A 60 (2004) 1091-1097

^bM. Lestari, G Indrayanto, *Profiles of Drug Substances, Excipients, and Related Methodology*, Volume 39, Chapter 3, 2014, Elsevier, page 115

UV-vis Experimental λ_{max}

	λ _{max} (nm)						
species	Dyrrsen 1972	Bernabe-Pineda 2007	Goemann and Roettgen 2014				
H ₄ Curr ¹⁺	555		555				
H ₃ Curr	420 -430	422	420 - 430				
H ₂ Curr ¹⁻	420 - 430						
HCurr ²⁻	520	463	450				
Curr ³⁻	480		470				

^aD. Dyrssen, Y. Novikov, L. Uppstrom, Anal. Chim. Acta, 60, 1972, 145
^bM. Bernabe-Pineda et al, Spectrochimica Acta Part A 60, 2004, 1091-1097
^cH. Goemann, T. Roettgen, CURF funded summer research at UMM, 2014

Absorbance at pH < 1

Roughly 10⁻⁵ M curcumin in an acetic acid – sulfuric acid mix

 λ_{max} for the smaller peak is 555 nm.

Curcumin absorbance at neutral pH

Roughly 10⁻⁵ M curcumin in roughly 1 % ethanol aqueous solution

Measurements at pH 10 are problematic

Curcumin in Buffer Solutions

Absorbance at pH greater than 12

Roughly 10⁻⁵ M curcumin in roughly 0.05 M NaOH (aq)

Computational Goals

Use HF, B3LYP^a, and M06 family^{b,c} methods with small basis sets and the SMD^d solvent model to

- predict relative stability of enol keto tautomers vs the diketone
- compute pKa values for curcumin protonation states in aqueous solution.
- compute accurate λ_{max} for curcumin protonation states in aqueous solution.
- Interpret results in terms of molecular structure and electron delocalization
- Clarify experimental results if possible

^a A. Becke, J. Chem. Phys. 1996, 104, 1040-1046
^b D. Jacquemin et al. J. Chem Theory Comput. 2010, 6, 2071-2085.
^c Y. Zhao, D. Truhlar, Theor. Chem. Acc. 2008, 120, 215
^d Marenich et al., J. Phys. Chem. B, 113, 18, 2009, 6378 – 6396.

Computational details

- Computations were carried out using G09^a iMac
- Geometries optimized for each protonation state and tautomer using HF, B3LYP^b, M062x^c, M06HF^c, and M06^c, the SMD^d (water) solvent model and 3-21Gd basis set.
- Geometries re-optimized when larger basis sets, 6-31Gd and 6-31+Gd, were tried.
- Frequency calculations verified local minima and provided thermochemical data.
- TD calculations performed on optimized geometries for each respective method and optimization of the transition with greatest oscillator strength to predict visible λ_{max}

^a Revision B .01, Gaussian Inc. 2010
^b A. Becke, *J. Chem. Phys.* 1996, 104, 1040-1046
^c D. Jacquemin et al. *J. Chem Theory Comput.* 2010, 6, 2071-2085.
^d Y. Zhao, D. Truhlar, *Theor. Chem. Acc.* 2008, 120, 215
^e Marenich et al., *J. Phys. Chem. B*, 113, 18, 2009, 6378 – 6396.

Method for computing pKa

$$pKa = \frac{\Delta G^{o}}{(\ln 10)RT}, \qquad \Delta G^{o} = G^{o}_{(H^{+}(aq))} + G^{o}_{(A^{-}(aq))} - G^{o}_{(HA(aq))}$$

G°_{(A- (aq))} and G°_{(HA (aq)} include contributions from HF or DFT electronic energy, solvation (SMD-water), thermal vibrational energy at 298 K and ZPE.

$$\Delta G^{o}_{(H^{+}(aq))} = G^{o}_{(H^{+}(g))} + \Delta_{solv} G^{o}_{(H^{+}(g \to aq))} + RT \ln(24.46)$$
$$G^{o}_{(H^{+}(aq))} = -6.28 \frac{kcal}{mol} + -264.61 \frac{kcal}{mol} + 1.89 \frac{kcal}{mol} = -269.00 \frac{kcal}{mol}$$

G. Shields, S. Alongi. *Annual Reports in Computational Chemistry*, Volume 6, Chapter 8, Elsevier 2010.

Relative stability of tautomers

$enol \rightarrow keto$

$$\Delta_{taut} G^o = G^o_{keto} - G^o_{enol}$$

G^o_{(keto (aq))} and G^o_{(enol (aq)} include contributions from HF or DFT electronic energy, solvation (SMD-water), thermal vibrational energy at 298 K and ZPE.

Computational Results

Relative stability of enol vs diketo

Method (including SMD H ₂ O)	$\Delta_{taut} G^o$ (kJ/mol)	Favored at 298 K
HF/3-12Gd	-29.4	diketo
HF/6-31Gd	-42.3	diketo
B3LYP/6-31Gd	-38.7	diketo
M062x/6-31Gd	13.7	enol
M06HF/6-31Gd	17.9	enol
M06/3-21Gd	50.9	enol
M06/6-31Gd	12.6	enol
M06/6-31+Gd	29.2	enol

HF and B3LYP with SMD favor the keto tautomer M06 family with SMD favor the enol tautomer or neither.

Experimental results indicate that the enol is favored at room temp.

pKa₁ = 9.55 (M06/6-31+Gd SMD)

8.38 or 8.55 from experiment

pKa₂ = 12.02 (M06/6-31+Gd)

9.88 or 9.30 from experiment

pKa₃ = 11.25 (M06/6-31+Gd SMD)

10.41, 10.51, 10.69 from experiment

UV-vis λ_{max} based on TD computations

SMD (water)	6-31Gd					3-21Gd		6-31+Gd	Ехр
λ_{max} (nm)	HF	M06HF	M062x	M06	B3LYP	B3LYP	M06	M06	Ours/Lit
H_4A^+				529			528	537	555ª/ <mark>555</mark> b
H ₃ A (enol)	300	327	375	438	450	436	434	452	430ª/ 420-430 ^{b,c}
H ₃ A (keto)	268	274	306	356	362	328	352	368	
H_2A^-	288	326	356	401	419	381	392	417	?/420-430 ª
HA ²⁻				457			459	471	450ª/ 430 & 520 ^b / 463 ^c
A ³⁻				455			443	482	470 ^a /480 ^b

^aH. Goemann, T. Roettgen, CURF funded summer research at UMM
^bD. Dyrssen, Y. Novikov, L. Uppstrom, Anal. Chim. Acta, 60, 1972, 145
^cM. Bernabe-Pineda et al, Spectrochimica Acta Part A 60, 2004, 1091-1097

Effect of SMD (water) solvation on λ_{max} according to TD computations

λ_{max} (nm)	SMD	H ₄ A ⁺	H ₃ A (enol)	H ₃ A (keto)	H ₂ A ⁻	HA ²⁻	A ³⁻
M06/3-21Gd	water	527.59	434.43	332.29	392.02	461.56	
M06/3-21Gd		549.29	403.64	313.82	500.79	801.73	
M06/6-31+Gd	water		451.89		416.63		881.53
M06/6-31+Gd			415.75		533.64		1332.7

Computed transitions are different for gas phase than for solvated species described by the SMD (water) model.

Gas phase results for anions should be viewed with more doubt than the others. Oscillator strengths are small or zero. Transition orbitals for the gas phase anions have positive energy. Interpretation based on the particle-in-a-box-model

Delocalization of phenolic electrons changes the box length

Balasubramian used MO theory Pariser-Parr-Pople (PPP) Hamiltonian.

Theoretical n -> π^* transitions match experiment the best. Delocalization including the phenolic C-O group explains red-shift for the anion.

 $n \rightarrow \pi^*$ 430 nm (neutral) $n \rightarrow \pi^*$ 483 nm (anion)

K. Balasubramanian, *Indian Journal of Chemistry*, Volume 30 A, 1991, 61-65. K. Balasubramanian, Int. J. Quant. Chem. 37, 1990. 449-463.

Our particle-in-a-box approach.

- 1. Look at orbitals involved in the optimized transition based on TDDFT
- 2. Count nodes in the transition orbitals to calculate quantum number n and the number, N, of delocalized electrons in the box.
- 3. Compare N with resonance structures for the protonation state of interest to see if it makes sense.
- 4. Calculate L based on λ_{max} from the computation.
- 5. Measure L based on the optimized geometry and the resonance structures.
- 6. Compare L based on λ_{max} and L based on geometry.

Particle-in-a-box (enol)

$$\pi_{\rm HOMO} \rightarrow \pi^*_{\rm LUMO}$$

Comfirmed by TD DFT

Particle-in-a-box (trianion)

Comfirmed by TD DFT

Particle-in-a-box (dianion)

species	n/HOMO	n/LUMO	λ _{max}	L (Angstroms)
trianion	6 (N = 12e⁻)	10 (N = 18 e ⁻)	461.53 nm	11.01

 $\Delta E = E_{final} - E_{initial} = \frac{hc}{\lambda_{max}}$ $\frac{10^2 h^2}{8 m_e (15.8 \times 10^{-10} m)^2} - \frac{6^2 h^2}{8 m_e L^2} = \frac{hc}{4.61 \times 10^{-9} m}$ Solve for L = 11.01 Angstroms

Dianion resonance structures

particle-in-a-box results

species	Nodes in HOMO	n	λ (nm)	L (PIAB) (Å)	L (DFT) (Å)
Protonated	8	9	527	17.44	17.35
enol	8	9	434	15.8	15.2
keto	4	5	332	12.48 (LUMO)	13.24 (LUMO)
enolate	8	9	417	15.50	14.52
dianion	5	6	461	11.01	11.01
trianion	8	9	482	16.70	16.71

Hypothesis

- Our computed pKa₂ is too high.
- Dyrrsen et al's 520 nm peak for HA²⁻ seems to indicate a different molecular structure.

<u>Hypothesis</u>: Perhaps a more stable structure for the HA²⁻ protonation state is the diphenolate.

Instability of enolate-phenolate dianion

Electrostatic potential mapped onto total electron density (GaussView 5.1)

- 1. Repulsion between carbonyl groups
- 2. π -electron delocalization does not extend through the entire molecule.

Proposed diphenolate

diphenolate resonance structures

Diphenolate M06/6-31+Gd results

pKa₂ = 9.88, pKa₃ = 13.38, λ_{max} = 543 nm

experimental and computed pKa

species	Ex	perimental p	M06/6-31+Gd pKa				
	UV-vis	Potentiometric titratoin	HCI titration	Dianion 1	Dianion 2	Averaged dianion 1&2	Averaged dianion 1&2*
H ₃ Curr	8.38 ^a	8.54 ^b	8.38 ^b	9.55	9.55	9.55	8.60
H ₂ Curr ¹⁻	9.88 ª	9.30 ^b	9.88 ^b	12.02	9.88	10.95	10.00
HCurr ²⁻	10.51 ^a	10.69 ^b	10.51 ^b	11.25	13.38	12.33	11.38

 $\Delta_s G(H^+(aq)) = -265.9 \text{ kcal/mol used instead of} \Delta_s G(H^+(aq)) = -264. \text{ kcal/mol Lowers all of our computed pKa values by 0.95 pKa units.}$

M. Tissandier *et al., J. Phys. Chem. A*, 1998, 102, 7787. Kelly *et al., J. Phys. Chem. B*, 2006, 110, 16066.

^aM. Bernabe-Pineda et al., *Spectrochimica Acta Part* A 60 (2004) 1091-1097 ^bM. Lestari, G Indrayanto, *Profiles of Drug Substances, Excipients, and Related Methodology*, Volume 39, Chapter 3, 2014, Elsevier, page 115.

Conclusions

- 1. M06 methods with SMD confirm the enol-keto tautomer is more stable than the diketone.
- 2. M06 and B3LYP both SMD give reasonable λ_{max} but best results varied with 3-21Gd, 6-31Gd, and 6-31+Gd basis sets.
- 3. M06/6-31+Gd SMD gave pKa values in good agreement with experiment. $\Delta_s G(H^+(aq)) = -265.9$ kcal/mol should be used.
- 4. The-particle-in-a-box model gives remarkable agreement with computed geometry and λ_{max}
- 5. Best agreement of our results with experimental pKa and λ_{max} seems to imply a mixture of dianion protonation states.

Acknowledgements

- Encouragement from UMM Chemistry Faculty
- Funding from the UMM Dean's Office for iMac computers
- Funding from the UMM student Tech Fee for computers and updated G09 and GV software
- CURF Alumni Summer Research for funding work by Peter Braegelmann, Tim Roettgen, and Hanna Goemann
- Previous work on computational pKa with Obsa Bokku, Melissa Denler, Abdala Bashir, Tiwa Ajibewa, and Finhas Ogbazghi funded by NSF LSAMP