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ROCK GLACIERS IN CENTRAL COLORADO, U.S.A., AS INDICATORS OF HOLOCENE CLIMATE 
CHANGE 

 

Kurt A. Refsnider* and Keith A. Brugger 

Geology Discipline, University of Minnesota, Morris, 600 E. 4th Street, Morris, Minnesota 56267, U.S.A. 

*Present Address: University of Wisconsin – Madison, Department of Geology and Geophysics, 1215 W. 
Dayton Street, Madison, WI 53706, U.S.A. 

 

ABSTRACT 

We measured thalli diameters of the lichen Rhizocarpon subgenus Rhizocarpon on 48 individual lobes 

of 18 rock glaciers and rock glacier complexes in the Elk Mountains and Sawatch Range of central 

Colorado.  Cumulative probability distribution and K-means clustering analyses were used to separate 

lichen thalli measurements into statistically-distinct groups, each interpreted as representing a discrete 

episode of rock glacier activity driven by an interval of cooler climate.  Lichen ages for these episodes were 

assigned using a growth curve developed for Rhizocarpon geographicum in the nearby Front Range.  An 

early Neoglacial episode, ca. 3080 yr BP, is correlative to other glacial and periglacial activity in the 

southern Rocky Mountains and surrounding areas and broadly corresponds to an interval of climatic 

deterioration evident in several other proxies of Holocene climate.  The younger two episodes, ca. 2070 and 

1150 yr BP, are also coeval with regional (Audubon) glacial and periglacial activity but are thus far not 

widely recognized in other climate proxies.  

 

INTRODUCTION 

Rock glaciers are lobate or tongue-shaped masses of rock and ice that form under cold climates in 

alpine regions and at high latitudes.  Such climates promote the splitting of exposed bedrock in valley and 

cirque walls by frost action, and in some cases, the accumulation of interstitial ice in talus fields.  In many 

alpine settings, rock glaciers are ubiquitous elements of the landscape and can contribute significantly to its 

geomorphic evolution by transporting large volumes of debris downslope by creep facilitated by ice 

deformation (Barsch, 1977; Giardino and Vitek, 1988; Humlum, 2000).  Historically, two general models of 
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rock glacier genesis have been proposed.  One is a periglacial model (sensu Clark et al., 1998) wherein the 

in situ freezing of rain and melt water occurs within the interstices of pre-existing talus fields (Capps, 1910; 

Wahrhaftig and Cox, 1959; Outcalt and Benedict, 1965).  The other is a glacigenic model in which an 

existing glacier is buried by rock debris.  This debris is derived either from cliffs upslope or by the 

accumulation of debris melting out of the ice, subsequently insulating the underlying ice (Brown, 1925; 

Outcalt and Benedict, 1965; Potter, 1972).  More recent work suggests these two models may represent 

end members of a continuous spectrum of the processes responsible for rock glacier development (Corte, 

1987; Whalley and Martin, 1992; Elconin and LaChapelle, 1997; Brazier et al., 1998; Clark et al., 1998), but 

this conclusion is not universally accepted (e.g. Haeberli, 1985). 

Regardless of their mode of formation, rock glaciers and/or rock glacier activity have been used in 

varying manners to reconstruct paleoclimates.  Previous investigations (e.g. Birkeland, 1973; Miller, 1973; 

Morris, 1987; Nicholas and Butler, 1996) have used relict rock glaciers to simply establish qualitative 

chronologies of Holocene climate change because intervals of rock glacier activity often correlate 

chronostratigraphically with those of Neoglacial glacier expansion, thus broadly implying colder periglacial 

conditions.  Several studies have used relict rock glaciers to derive more quantitative estimates of 

paleoclimate based on their implications for depression of snow- or equilibrium-line altitudes (ELAs), the 

lower limit of rock glaciers in relation to zones of continuous and discontinuous permafrost, or more specific 

relationships between modern climate and active rock glaciers (e.g. Kerschner, 1978; Clark et al., 1994; 

Brazier, et al., 1998; Sailer and Kerschner, 1999;  Hughes et al., 2003).  Rock glaciers do not, however, 

always show simple and consistent relationships to climatological parameters (Baroni et al., 2004), 

underscoring the need for a better understanding of the interactions between rock glaciers of a specific 

genetic origin (i.e., periglacial or glacigenic) and climate, debris supply, and topography (Olyphant, 1987; 

Kirkbride and Brazier, 1995; Humlum, 1998, 2000; Hughes et al., 2003) before their full potential as a 

climate proxy is realized.  Nevertheless, some valuable insights regarding paleoclimates can be gleaned 

from rock glacier activity.  In this study, we use lichenometry to date intervals of rock glacier activity to 

document late-Holocene climate changes in central Colorado. 
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METHODS 
STUDY AREA 

The Sawatch Range (Figure 1) is a fault-bounded block consisting primarily of Precambrian crystalline 

rocks uplifted during the Late Mesozoic-Early Tertiary Laramide Orogeny (Tweto, 1987).  In contrast, the 

Elk Mountains consist of thrust-faulted Paleozoic and Mesozoic sedimentary sequences.  Tertiary intrusive 

rocks are common in both ranges.  High peaks in the study area, many exceeding 4000 m, are separated 

by deeply incised valleys or intermontane parks. The high relief of the region is the product of Tertiary uplift 

and stream dissection.  Subsequent modification by successive Pleistocene glaciations created the present 

alpine landscape. 

Climate across the study area is generally cool and dry but temperatures tend to decrease and 

precipitation increases from east to west.  Differences in elevation notwithstanding, values for mean annual 

temperature and precipitation at Buena Vista (2417 m; Figure 1) are 6.2 °C and 25.5 cm, whereas those at 

Crested Butte (2706 m) are 0.6 °C and 60.6 cm (NCDC 1971-2000 norms from the Western Regional 

Climate Center, http://www.wrcc.dri.edu/summary/climsmco.html).  

Within the study area, moraines of two late-Pleistocene glaciations are recognized in the Taylor Park 

area, adjacent parts of the Elk Mountains (Brugger and Goldstein, 1999; Brugger unpublished), and the 

upper Arkansas River valley (Figure 1, Nelson and Shroba, 1998).  Cosmogenic 10Be and 36Cl zero-erosion 

exposure ages from boulders on last glacial maximum (LGM) terminal moraine complexes in the Taylor 

River valley (Figure 1) range from 16.3 ± 1.6 to 22.2 ± 2.8 ka (Brugger, 2006) and suggest glacial advances 

during the LGM in the study area are generally correlative to others in the Southern Rocky Mountain region 

(e.g. Gosse et al., 1995; Benson et al., 2005).  ELA depression during the LGM suggests that mean 

summer temperatures in the region may have been ~7-9 °C cooler than present (Brugger and Goldstein, 

1999; Brugger, 2006).  Late glacial and Holocene climate changes that followed were described by both Fall 

(1997) and Emslie et al. (2005) and will be discussed subsequently. 

ROCK GLACIERS  

Rock glaciers are abundant within the study area.  Many of these are relict features, or least inactive, as 

indicated by morphological characteristics including frontal slopes much less than the angle of repose, soil 
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development and extensive vegetative cover, and/or stable and lichen-encrusted boulders.  Others may still 

be active, as indicated by steep and sharp-crested fronts, “bull-dozed” turf rolls at the toes of frontal slopes, 

loose and unstable surface boulders above the toes, and a general lack of vegetation.  Activity is also 

suggested by earlier measurements on two rock glaciers in the Elk Mountains (Bryant, 1971) and ongoing 

measurements on the East Beckwith rock glacier (Figure 2a; Brugger, unpublished) where mean velocities 

are 43, 40, and 7 cm yr-1 respectively. 

Morphologies and topographic settings of rock glaciers throughout the region vary.  The majority of the 

rock glaciers we studied are located in cirque basins, and of these, approximately half are situated on 

slopes extending from the valley side rather than the headwall; those not in cirques are situated below 

rockwalls.  Continuous talus deposits connect all the rock glaciers to the debris source cliffs above.  Despite 

their location, those situated in cirques are mostly of the “valley-wall” type (Outcalt and Benedict, 1965).  

These rock glaciers are smaller lobate forms, often occurring below avalanche chutes and fed by talus 

slopes along sidewalls and typically extend onto basin floors but do not fill the entire basin.  Brazier at al. 

(1998) recognized analogous, non-glacigenic forms in cirque basins of the Ben Ohau Range of New 

Zealand.  The exceptions are several rock glaciers in the Beckwith Range and on Italian Mountain (Figure 

1) that are best described as “cirque-floor” types.  These larger tongue-shaped forms often fill the entire 

basin and emanate from talus slopes below cirque headwalls.  However, these forms are not moraine-like 

deposits, nor do they have irregular surfaces associated with the stagnation of inactive, retreating debris-

covered glaciers.  

The rock glaciers in the study area include both single- (Figures 2a, lower left, and 2b) and multiple-

lobed forms (Figure 2c), where lobes are characterized as arcuate, steep-fronted features.  Most multi-

lobed forms exhibit stratigraphic relationships recording the advance of younger lobes over older ones 

(Figure 2c).  The tongue-shaped rock glacier on East Beckwith Mountain shown in the center of Figure 2a is 

the only feature included in this study with prominent concentric lobes with ridge-like morphologies.   

Without detailed geophysical studies (e.g. Potter et al., 1998; Ikeda and Matsuoka, 2002), glaciological 

approaches (e.g. Potter, 1972; Konrad et al., 1998), coring (Potter, 1972), or direct observations of their 
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internal structure, it is difficult to be certain of the origin of the rock glaciers used in this study.  However we 

suspect, as have others (e.g. Outcalt and Benedict, 1965; Calkin et al., 1987; Clark et al., 1994, 1998; 

Kirkbride and Brazier, 1995) that the morphology and topographic setting of the valley-wall rock glaciers (or 

equivalent forms) reflect a periglacial genesis.  Such a presumption is supported by evidence suggesting 

that many cirque basins were ice-free prior to the rock glacier activity documented in this study (Fall, 1997).  

No evidence has been found suggesting that glaciers re-formed during Holocene cool intervals.  In contrast, 

the cirque-floor rock glaciers in the Beckwith Range (Figure 2a, center) may be glacigenic.  Within the 

largest of these rock glaciers, a discrete ice layer under the surface debris was evident in one exposure, 

and the ridge-like lobe-front morphology is possibly indicative of a glacigenic origin (Clark et al., 1998; 

Corte, 1987).  Given the wetter and cooler climate in this part of the study area, glacial ice could have 

persisted (or re-formed) here longer than elsewhere in the study area.  

SAMPLING  

We selected 48 lobes on 18 rock glaciers or rock glacier complexes on the basis of location, elevation, 

and aspect.  These rock glaciers fall within an east-west longitudinal transect (106.15 – 107.22˚ W) and 

range in terminus elevation from 3,005 to 3,755 m (Table 1).  Rock glacier surfaces were dated using 

lichenometry (Beschel, 1961; Noller and Locke, 2001), as in numerous other studies of Holocene landforms 

(e.g. Birkeland, 1973; Calkin et al., 1987; Morris, 1987; Nicholas and Butler, 1996; Konrad and Clark, 1998).  

The lichen Rhizocarpon subgenus Rhizocarpon (generally synonymous with Rhizocarpon geographicum in 

many lichenometric studies) was used because of its slow and steady growth in alpine and arctic regions, 

relative abundance at higher elevations on a variety of lithologies, and ease of identification (Noller and 

Locke, 2000). 

We measured thalli diameters of lichens on distinct lobes at various elevations and positions within 

each rock glacier.  Although there is no consensus regarding the most effective sampling strategy for 

determining the maximum lichen size on rock substrates (Innes, 1984; McCarrol, 1994; Bull and Brandon, 

1998; Noller and Locke, 2000), we employed a sampling protocol similar to that used by Innes (1984) 

because it is most suitable for dating rock glacier deposits.  The lichen distribution on each lobe was 

examined to locate the areas with the largest thalli.  Once such areas were found, we established a circular 
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sampling site with a radius of five meters.  We sampled most lobes in two locations, and larger lobes and 

those with more variable lichen sizes were sampled in three areas.  In nearly all cases, sampling sites were 

located just above the break in slope above the lobe terminus.  Rock substrates were mostly of granitic 

lithologies, but some lichens were measured on gneissic and quartzitic boulders.  

Within each sampling site, we measured the largest 25 Rhizocarpon subgenus Rhizocarpon thalli.  

These measurements were taken along the longest axis of each thallus, including the black prothallus rim.   

Lichens with very irregular shapes and those that appeared to have grown together were not measured.  

We avoided sampling in any areas that appeared to have suffered from snowkill, a phenomenon which can 

significantly affect the age distribution of lichens (Benedict, 1990, 1993).   

 
RESULTS  

Lichen thalli measured on rock glacier lobes varied in diameter from 28 to 260 mm.  Five of the largest 

of these, ranging in size from 160 to 260 mm, were found on boulders greater than 4 m across occurring on 

a single lobe on the eastern flank of Italian Mountain.  Hamilton and Whalley (1995) concluded that 

anomalously large thalli represent lichens that may have been established on rock substrates prior to 

deposition on the rock glacier.  Therefore, following their suggestion, these larger lichens were excluded 

from subsequent statistical treatments of the data presented here.  Three thalli on quartzite boulders from 

two lobes at Ferris Creek were between 168 and 190 mm, but the size-frequency distribution of thalli on 

these lobes does not allow these larger thalli to be distinguished as statistical outliers. 

  Innes (1984) found the most accurate method for establishing maximum lichen size for a landform was 

to use the mean diameter of the largest five thalli from a sampling site.  Using the five largest thalli from 

each lobe, the thalli size range becomes 39-190 mm (Figure 3a).  For lobes where lichens were measured 

in multiple locations, we only used the largest mean in the data analysis.   

The oldest lichens on an individual lobe were nearly always found just above the break in slope above 

the terminus.  Lichens become smaller, and therefore younger, with increasing distance upslope.  

Generally, the differences between the mean diameter of the largest five lichens in several different 

sampling sites located across the front of a lobe were less than 10 mm.  Within a single rock glacier 
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complex, such as those at East Beckwith East and Queen Basin (Figures 2a and c), nested and 

overlapping lobes exhibit older ages with increasing distance from the talus source.  These observations 

support our assumption that each individual lobe represents a separate period of rock glacier activity.  

 

DISCUSSION 

SIZE AND AGE DISTRIBUTIONS 

A local lichen growth curve has not yet been developed for the study area due to a lack of dated 

surfaces.  Therefore, lichen ages in this study were calculated, as they have been elsewhere (e.g. Miller, 

1973; Nicholas and Butler, 1996; Munroe, 2002), using a growth curve (Figure 3b) developed for 

Rhizocarpon geographicum in the Front Range of Colorado (Benedict, 1967).  Revisions to this growth 

curve (Benedict, 1993) include the addition of a lichen with a thallus diameter of 131 mm, so the curve now 

extends to nearly 4000 yr BP without extrapolation.  We also recalibrated the 14C age data used in this 

growth curve using CALIB 5.0.1 (Stuiver et al., 2005). 

The applicability of Benedict's (1967, 1993) growth curve to the Elk Mountains and Sawatch Range 

warrants some additional discussion.  Climate and substrate lithologies, with the exception of quartzitic 

boulders, in the study area are both very similar to those in the Front Range.  Nonetheless differences in 

climate, though very minor, may affect lichen growth rates.  Of note, Birkeland’s (1973) earlier work in the 

Elk Mountains suggested that the growth rate for Rhizocarpon geographicum here could possibly be lower 

than that in the Front Range.  In addition, there are conflicting conclusions regarding the influence of 

lithology (and associated textures) on lichen growth (cf. Bull and Brandon, 1998; Noller and Locke, 2000); 

i.e., growth rates of lichens on quartzitic substrates may differ from those on the granitic and gneissic rocks 

upon which Benedict’s (1967, 1993) growth curve is based.  Munroe (2002), in particular, concluded that 

the use of Benedict’s (1967, 1993) curve could potentially underestimate lichen ages on quartzite.  Lacking 

a more robust dataset to assess possible differences in growth rates on varied lithologies, only those lichen 

measurements from lobes comprised of granitic and gneissic boulders are emphasized in the analyses and 

conclusions that follow. 
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We applied two different statistical methods to separate the lichen age-frequency data into statistically 

different groups: K-means clustering analysis and cumulative probability analysis (CPA).  K-means 

clustering analysis separates a dataset into groups by maximizing between-group variation while minimizing 

within-group variation.  Excluding measurements made on quartzitic boulders, this technique defined four 

groups (Figure 4a) with mean ages of 1136, 2149, 3031, and 3552 yr BP.  A one-way ANOVA test 

confirmed that all four groups are significantly different at a 95% confidence level.  Inclusion of the quartzitic 

boulder data does not significantly change these results, though the mean of the third-oldest peak becomes 

219 yr older. 

CPA sums the probability distributions of a dataset and incorporates normally-distributed errors.  Using 

the ages of each of the five largest lichens on granitic and gneissic substrates from all lobes and an 

assigned common 1σ uncertainty of 150 years (see below), three groups were identified with peak 

amplitude ages of 1178, 2012, and 3110 yr BP (Figure 4b).  These groups correspond very closely with the 

ages of the three youngest groups in the K-means clustering analysis.  We note that including lichen 

measurements made on quartzite boulders in this analysis only has a sizeable affect on the oldest of group, 

increasing it to 3328 yr BP (Figure 4b).  We repeated this analysis using the mean age of the largest five 

lichens from each rock glacier lobe, and again three very similar age groups were identified, with peak 

amplitude ages of 1132, 2044, and 3088 yr BP (Figure 4c).  Inclusion of the measurements made on 

quartzite in this analysis changes the peak amplitude ages by between 72 and 136 years.  Innes (1984) 

concluded that using the mean age of the largest five lichens provides the most accurate age of a landform, 

but our results suggest differences in age assignment using the largest five or the mean of the largest five 

thalli are minimal (<4%).  

For measurements made on granitic and gneissic boulders, three clusters of lichen ages for rock glacier 

surfaces are common to all three statistical analyses, having ages of approximately 1150, 2070, and 3080 

yr BP.  If lichen growth rates on quartzite are similar to those on granitic and gneissic substrates, rock 

glaciers surfaces cluster around ages of 1180, 2030, and 3270 yr BP.  An older peak in the K-means 

clustering analysis (3550 yr BP, Figure 4a) was not differentiated by CPA.  To varying degrees, all analyses 
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reveal a subtle peak or “shoulder” between 2360-2540 yr BP.  This peak is not statistically significant, 

however, and therefore it and the 3550 yr BP peak are not considered further in this paper. 

The total uncertainty in the thallus diameter of each statistically-defined group is difficult to quantify.  

Uncertainties arising from sampling and the variability in the diameter of the largest five lichens on a specific 

lobe, as discussed above, are thought to be small (<5%).  Additional uncertainty arises from the method by 

which the data are segregated into groups.  A Euclidian distance metric was used in the K-means clustering 

analysis, but other metrics result in only slightly different (<1%) group mean ages.  With due consideration 

of the greater uncertainties in the response time of rock glacier systems (Olyphant, 1987), lags in lichen 

colonization (probably fewer than 50 years; Beschel, 1961; Evans et al., 1999; Noller and Locke, 2000), and 

growth rates, a total uncertainty of 150 years is probably reasonable (cf. Kirkbride and Brazier, 1998).  This 

uncertainty is most probably skewed toward older ages, making the assigned lichenometric ages minimum 

estimates. 

LICHENOMETRIC AGE SIGNIFICANCE AND PALEOCLIMATIC IMPLICATIONS 

It is generally accepted that the age of a rock glacier surface represents the time of debris production 

and deposition (Hamilton and Whalley, 1995; Kirkbride and Brazier, 1995; Konrad and Clark, 1998; Sloan 

and Dyke, 1998).  Dated intervals of rock glacier activity are typically interpreted as periods of climate 

deterioration (e.g. Benedict, 1968; Birkeland, 1973; Miller, 1973; Calkin et al., 1987; Nicholas and Butler, 

1996).  However, few studies have explicitly considered the how the paleoclimatic interpretation of these 

ages might differ depending on the mode of rock glacier genesis.  Morris (1987), Morris and Olyphant 

(1990), Brazier et al. (1998) and Hughes et al. (2003) stress that while rock glaciers of a periglacial origin 

likely indicate cooler temperatures, glacigenic rock glaciers may form under a warming climate.  Given our 

assumption that most of the rock glaciers investigated in this study are periglacial in origin, we suggest that 

the lichen-dated surfaces documented here reflect rock glacier activity associated with intervals of cooler 

climate within the study area.  Such conditions would not only promote the formation of interstitial ice, but 

also potentially increase debris supply by virtue of increased mechanical weathering by frost cracking 

(Walder and Hallet, 1986; Matsuoka, 2001; Hales and Roering, 2005).  At some point, a combination of 

sufficient debris thickness and surface slope would generate the driving stress required for mobilization of 
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the ice-rock mixture (Wahrhaftig and Cox, 1959; Kirkbride and Brazier, 1995).  Rock glaciers remain active 

so long as driving stresses are sufficient and climate is such that interstitial ice could persist.  In contrast, 

talus produced during warmer intervals would accumulate below rock walls, but because interstitial ice 

cannot form, new rock glaciers can neither develop nor can existing ones be reactivated. 

The possibility exists, however, that rock glacier lobes were intermittently active during sustained 

periods of cooler climate (Kirkbride and Braizier, 1995).  Rock glaciers might have become inactive as flow 

attenuated debris thicknesses and surface slopes and thus reduced driving stresses below some critical 

value.  Continued debris accumulation might have eventually reactivated lobes as the threshold stress was 

restored.  Under this scenario, rock glacier activity is not recording discrete intervals of cooling.  Also, 

reactivation – caused by either increased talus deposition or a distinct cooling event – can result in a mantle 

of younger debris that buries older lobes or rock glacier surfaces.  Consequently, Kirkbride and Brazier 

(1995) argue that (1) climate records derived from rock glacier activity may be incomplete, or complicated 

by non-climatically forced activity; (2) rock glaciers within individual basins may not show a coherent pattern 

of activity; and (3) regional climates signals deduced from rock glacier activity will necessarily be noisy.   

Based on the foregoing, some caution should therefore be exercised when making climatic 

interpretations of rock glacier activity.  However, we feel the lichen ages of 1150, 2070, and 3080 yr BP 

date discrete intervals of debris delivery and transport to the front of individual rock glacier lobes under 

cooler climates.  This conclusion is based on the statistically-significant clustering of lichen ages seen in 

Figure 4 and the close correlations between these ages and those of cool intervals inferred from other 

climate proxies documented elsewhere in the Rocky Mountain region.  Independent of climate, the 

stochastic nature of rockfall, hence debris deposition on rock glacier surfaces, should preclude a clustering 

of lichen ages.  Following Kirkbride and Brazier (1995), we note that even given the possibility of rockfall-

driven “pulses” of rock glacier activity during prolonged cool intervals, it is unlikely that the latter persisted 

for 2000 years (ca. 3080 to 1150 yr BP) during the late Holocene (see below).  We suggest the greater 

frequency (or strength) evident in the youngest peak at 1150 yr BP may be an artifact of the aforementioned 

burial of older rock glacier lobes by younger advances.  Finally, it bears mentioning that if data from those 
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few rock glaciers that may be of glacigenic origin is omitted from the foregoing analyses, the ages of 

individual peaks do not change significantly.  

Episodes of rock glacier activity in the Sawatch Range and Elk Mountains are compared 

schematically with other proxy records of Holocene climate change in the southern Rocky Mountains and 

adjacent regions in Figure 5.  Direct comparisons and/or correlations must necessarily be tentative due to: 

(1) the temporal resolution and age control of chronologies differ among individual studies; (2) having to 

recalibrate 14C ages where necessary and possible (using CALIB 5.0.1, Stuiver et al., 2005); and (3) 

methodological and/or sampling differences (e.g. ages obtained using the largest versus the mean of the 

largest five lichens).  Nonetheless, intervals of cooler climate inferred from rock glacier activity within the 

study area correspond with the broader regional pattern of mid- to late Holocene climate change. 

Within the immediate study area, Fall (1997) used pollen spectra and plant macrofossils to reconstruct 

Holocene climates and found evidence indicating Neoglacial cooling beginning 4000 14C yr BP (ca. 4500 

cal. yr BP) and lasting for perhaps 2000 years.  Fall (1997) estimates mean annual temperatures during that 

interval decreased by 0.8°C (but were still 0.6-1.2°C warmer than modern climate), and conditions were 

drier from 4000 to 2600 14C yr BP (ca. 4500 to 2800 cal. yr BP).  Winter precipitation may have dominated 

during this interval, implying that summers were very dry.  By ca. 2000 yr BP, the modern climate was 

established. 

 In the upper Gunnison Basin, plant material preserved in packrat middens also suggests a cooling 

period beginning 4000 14C yr BP and lasting until at least 3180 14C yr BP (ca. 4500 to 3500 cal. yr BP; 

Emslie et al., 2005).  Pollen records from the San Juan Mountains in southwestern Colorado suggest 

cooling began by about 3500 14C yr BP (ca. 3780 cal. YR BP; Carrara et al., 1991).  Analyses of fossil 

beetle assemblages in the Front Range of Colorado led Elias (1996) to conclude that a period with a 

gradual trend toward cooler summers was underway by 7800 yr BP but temperatures remained comparable 

to those today.  However, between 2965 and 2680 14C yr BP (ca. 3150 and 2850 cal. yr BP), summer 

temperature could have been 1-2.5 °C cooler than present.  Mean January temperatures throughout most 

of the Holocene are thought to have been below modern values until the last millennia (Elias, 1996).  In the 
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La Plata Mountains, mean July temperatures are inferred to have been cooler between 4000 and 2500 14C 

yr BP (ca. 4450 to 2880 cal. yr BP) on the basis of pollen spectra (Petersen and Mahringer, 1976).  The 

oldest episode of rock glacier activity revealed by our study, occurring ~3080 yr BP, appears to be coeval 

with the earlier stages of the Neoglacial cooling documented by these studies.  In addition, this episode 

coincides with widespread glacial or periglacial activity documented in the region, in particular the northern 

Sawatch Range (Miller, 1973), Front Range (Benedict, 1973, 1985), Sangre de Cristo Range (Morris, 1987; 

Armour et al., 2002), the La Sal Mountains (Nicholas and Butler, 1996), and the Uinta Mountains (Munroe, 

2002). 

The younger two episodes of rock glacier activity in the study area are correlative to Audubon-aged 

(Benedict, 1973, 1993) glacial deposits and rock glacier surfaces found throughout Colorado (Benedict, 

1973, 1985; Birkleland, 1973; Miller, 1973; Morris, 1987) and Utah (Nicholas and Butler, 1996; Munroe, 

2002).  The cool intervals associated with these episodes are not apparent in other climate proxies, with the 

exception of a record of latewood frost-rings from the Front Range (Brunstein, 1996).  These younger rock 

glacier surfaces also tend to occur in, although they are not exclusive to, the western portion of the study 

area (Table 1).  We cannot say whether this is a result of more persistent rock glacier activity due to spatial 

trends in regional climate, differences in microclimates, more complete burial of older surfaces during 

younger advances, or simply due to sampling bias.  Future work will focus on these questions by expanding 

the database and developing a local lichen growth curve.   

 

CONCLUSIONS 

Rock glacier surfaces and/or lobes of three discrete ages occur in the Sawatch Range and Elk 

Mountains, each representing an episode of increased debris production, formation of interstitial ice, and 

subsequent flow under cooler climates.  The earliest episode, dated at 3080 yr BP, is correlative with early 

Neoglacial glacial and periglacial activity elsewhere in the southern Rocky Mountains and adjacent areas 

and is closely associated with a cool interval identified in other climate proxies from the region.  The 

younger two episodes, dated at 2070 and 1150 yr BP, also generally correspond to regional glacial and 
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periglacial activity during the Audubon stade.  As of yet however, these intervals have not been recognized 

in any other local climate proxies.  This may suggest that these events are related to very local topoclimatic 

modification of regional- (or larger) scale climate forcings.  
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FIGURE CAPTIONS 
 

FIGURE 1.  LANDSAT 7 (grayscale) image of the study area showing the locations of rock glaciers 
sampled.  The first number corresponds to the following: 1 - Gothic Mountain; 2 - Virginia Basin; 3 - Copper 
Creek; 4 - Queen Basin; 5 - East Beckwith Mountain; 6 -  Ferris Creek; 7 - Italian Mountain; 8 - Pieplant 
Creek; 9 - Cottonwood Pass; 10 - Cumberland Pass; and 11 - Mount Democrat.  The second number 
indicates the number of individual lobes upon which lichen measurements were made at each location. 
 
FIGURE 2.  Examples of sampling locations (open circles) and lobe (lines) ages on several rock glaciers 
and rock glacier complexes; numbers indicate the deposit age at each sampling location.  Note the general 
increase in deposit age with increasing distance from the talus source.  (a) Rock glaciers in the 
northeastern cirque of East Beckwith Mountain.  (b) A series of rock glaciers in the cirque immediately east 
of Mount Democrat.  (c) The rock glacier complex in Queen Basin. 
 
FIGURE 3.  (a) Size-frequency distribution for lichen thalli diameters on rock glacier surfaces.  A distinction 
is made between the distribution resulting from measurements made exclusively on granitic and gneissic 
substrates and those including measurements made on quartzitic substrates because growth rates on the 
latter may differ.  Inset (b) shows the growth curve used to calculate the age of the peaks in the size-
frequency plot (after Benedict, 1993). The linear regression (r2 = 0.985) is valid for thalli greater than 20 mm 
on the long axis; lichen growth rate is ~0.031 mm yr-1.  The ages of radiocarbon-dated surfaces have been 
recalibrated using CALIB 5.0.1 (Stuvier et al., 2005).  Error bars indicate 1σ uncertainty in the radiocarbon 
ages. 
 
FIGURE 4.  Frequency distribution and clustering of rock glacier ages. (a) K-means clustering analysis.  
Each peak on the curve is statistically-distinct at a 95% confidence level.  (b) Cumulative probability 
Gaussian distributions based on the largest five lichen thalli from each lobe and an assigned uncertainty 
(1σ) of 150 years in each age.  (c) Cumulative probability Gaussian distributions based on the mean of the 
largest five thalli from each lobe, also using an assigned uncertainty (1σ) of 150 years.  The histograms in 
(b) and (c) differ because (b) is based on 5 times more data points than (c). 
 
FIGURE 5. Comparison of intervals of rock glacier activity determined from this study (vertical bars) with 
selected paleoclimate proxies (horizontal bars) in the southern Rocky Mountains and surrounding areas.  
The approximate locations of the latter are shown in the inset map.  Cool intervals (darker gray) are 
variously defined in these studies as cooler than present, cooler than some long-term mean, cooler mean 
annual temperatures, cooler summer temperatures, and so forth.  See text for discussion. 
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FIGURE 5 
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