
University of Minnesota Morris Digital Well University of Minnesota Morris Digital Well

University of Minnesota Morris Digital Well University of Minnesota Morris Digital Well

Faculty Working Papers Faculty and Staff Scholarship

2006

Call-by-name Calculus of Records and its Basic Properties Call-by-name Calculus of Records and its Basic Properties

Elena Machkasova

Emily Christiansen

Follow this and additional works at: https://digitalcommons.morris.umn.edu/fac_work

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Machkasova, Elena and Christiansen, Emily, "Call-by-name Calculus of Records and its Basic Properties"
(2006). Faculty Working Papers. 7.
https://digitalcommons.morris.umn.edu/fac_work/7

This Article is brought to you for free and open access by the Faculty and Staff Scholarship at University of
Minnesota Morris Digital Well. It has been accepted for inclusion in Faculty Working Papers by an authorized
administrator of University of Minnesota Morris Digital Well. For more information, please contact
skulann@morris.umn.edu.

https://digitalcommons.morris.umn.edu/
https://digitalcommons.morris.umn.edu/fac_work
https://digitalcommons.morris.umn.edu/facschol
https://digitalcommons.morris.umn.edu/fac_work?utm_source=digitalcommons.morris.umn.edu%2Ffac_work%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.morris.umn.edu%2Ffac_work%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.morris.umn.edu/fac_work/7?utm_source=digitalcommons.morris.umn.edu%2Ffac_work%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:skulann@morris.umn.edu

Working Paper Series

A Call-by-name Calculus of Records
and its Basic Properties

Elena Machkasova
Assistant Professor of Computer Science

Emily Christiansen
Student

Faculty Center for Learning and Teaching
Rodney A. Briggs Library

Volume 2, Number 2
July 17, 2006

Faculty and Student Research

University of Minnesota, Morris
600 East 4th Street
Morris, MN 56267

Copyright © 2006 by original author(s). All rights reserved.

Faculty Center for Learning and Teaching
 Engin Sungur, Director
 Linda Pederson, Executive Administrative Specialist
Rodney A. Briggs Library
 LeAnn Dean, Director
 Peter Bremer, Reference Coordinator
 Matt Conner, Instruction Coordinator
 Steven Gross, Archivist
 Michele Lubbers, Digital Services Coordinator
 Shannon Shi, Cataloging Coordinator

Working Paper Series
Volume 2, Number 2
2006

Faculty Center for Learning and Teaching
Rodney A. Briggs Library
University of Minnesota, Morris

This Working Paper Series allows the broader dissemination of the scholarship of the University of Minnesota-Morris
Faculty, staff, and students. It is hoped that this Series will create a broader and much more accessible forum within the
borderless academic community, and will further stimulate constructive dialogues among the scholar-teachers at large.

A Call-by-name Calculus of Records
and its Basic Properties

Elena Machkasova
 Assistant Professor of Computer Science

Emily Christiansen
Student

University of Minnesota, Morris
Morris, MN 56267, USA

Working Paper Volume 2, Number 2

Copyright©2006 by Elena Machkasova, Emily Christiansen
All right reserved.

A Call-by-name Calculus of Records and its Basic

Properties

Elena Machkasova, Emily Christiansen
University of Minnesota, Morris

July 17, 2006

Call-by-name Calculus of Records

1 Introduction

This technical report contains definitions and proofs of properties of a call-by-
name calculus of records. The purpose of the calculus is to describe unordered
collections of (possibly mutually recursive) named components. The system
resembles a call-by-value calculus of records defined in [5], but the proof method
used in [5] (based on the lift and project properties) as well as an extension of
this method given in [6] fail for this calculus.

In this document we present the following:

1. the definition of the calculus - section 2.1.

2. the proof of confluence of evaluation relation in the calculus - section 3.

3. an attempt of a proof of the elementary lift/project diagram, as defined
in [6] - section 4. The section defines and proves the elementary lift/project
property (see 4.1). Unfortunately, the proof fails to find a non-trivial com-
pletion of the elementary lift/project diagram for the case of interaction of
two substitutions in mutually recursive components: one in an evaluation
context and the other one in a non-evaluation context. See case 3 of the
two substitutions (SS) case of the proof of theorem 4.2.

The completion of the diagram is trivial in the sense that it simply reverses
both steps, which technically satisfies the property 4.1, but clearly does
not allow for incorporating into an inductive proof (with the induction on
the number of evaluation steps, as in the approach in [5]) or for proving
termination properties, as in the approach in [6]. Example 4.7 shows why
a non-trivial completion of the diagram is not possible.

This document does not discuss goals, motivation, and the framework. See
other work by the authors for such a discussion ([5] contains the most compre-
hensive discussion).

2 Definitions

2.1 Call by Name Calculus of Records

The calculus is a two level system: the term level and the record level. Sets
whose names start with T are at the term level, those that start with R are at
the record level.

Definition 2.1. The calculus of records is defined as follows:

M ∈ TTerm ::= c | x | l | • | λx.M |M1 @ M2 |M1 + M2

C ∈ TContext ::= � | λx.C | C @ M |M @ C | C + M |M + C
E ∈ TEvalContext ::= � | E @ M | c + E | E + M
D ∈ RTerm ::= [l1 7→M1, ..., ln 7→Mn], li 6= lj if i 6= j
D ∈ RContext ::= [l1 7→ C, l2 7→M2, ..., ln 7→Mn]
G ∈ REvalContext ::= [l1 7→ E, l2 7→M2, ..., ln 7→Mn]

1

UMM Working Papers

Here M,N ∈ TTerm stands for terms, c are constants, x, y, z are variables
(distinct from constants), l stands for labels (distinct from variables and con-
stants), • is a black hole, λx.M is a lambda abstraction, M1 @ M2 is a function
application, M1 + M2 is a binary operation on terms, � is a context hole, C is
a general term context, E is a term evaluation context, D ∈ Rterm is a record,
l 7→ M is a binding (a component) in a record, where the term M is bound to
the label l, D is a general record context, and G is a record evaluation context.
We also use notation C for a term non-evaluation context, i.e. by definition
C ∈ TContext\TEvalContext. Likewise D is a record non-evaluation context
defined as D ∈ RContext\REvalContext.

Both levels of the calculus follow the call-by-name reduction strategy. We
define a reduction relation → and evaluation relation ⇒. On terms ⇒⊂→⊆
TTerm × TTerm, on records ⇒⊂→⊆ RTerm × RTerm. For both calculi
↪→=→ \ ⇒. Note that we use the same notations for the relations at the term
and at the record level.
Term Calculus Rules:

λx.M @ N M [x := N]
c1 + c2 c3 where c3 is the result of operation
E{•} •
E{R} ⇒ E{Q} where R Q
C{R} → C{Q} where R Q

Definition 2.2. The term included in the context on the left-hand side of the
term calculus rules above is called the redex of the corresponding reduction. We
use R as a metavariable for a redex.

Intuitively, the redex is the subterm that gets reduced by the reduction. It
is included in the context that remains unchanged by the reduction. Example:
in the reduction λx.2 + • → λx.• the redex is 2 + •. In the evaluation step
1 + λx.x @ 3⇒ 1 + 3 the redex is λx.x @ 3.
Record Calculus Rules:
We use [li

n7→
i=1

Mi] as the abbreviation for [l1 7→M1, ..., ln 7→Mn], l ↓M to denote

that in the record the term M is bound to the label l, i.e. the record contains
a binding l 7→M .

G{R} ⇒ G{Q} where R Q (TE)
G{l} ⇒ G{N} where l ↓ N , G 6= [l 7→ E, . . .] (SE)
D{R} → D{Q} where R Q (T)
D{l} → D{N} where l ↓ N (S)
[l1 7→ E{l1}, ...] ⇒ [l1 7→ E{•}, ...] (B)

Definition 2.3 (Notations for closures). 1. −→∗, =⇒∗, ↪→∗ stand for re-
flexive transitive closures of the respective relations.

2. →?, ⇒?, and ↪→? stand for reflexive closures of the respective relations.

3. ↔ stands for the reflexive symmetric transitive closure of →.

2

Call-by-name Calculus of Records

2.2 Non-confluence of →
This calculus has the same example of non-confluence as its call-by-value version
described in [5]. Originally this example was described in [2] in a somewhat
different system. The record [l1 7→ λx.l2, l2 7→ λy.l1] has two non-evaluation
substitution redexes. By choosing each of the two redexes we obtain these two
records: [l1 7→ λx.λy.l1, l2 7→ λy.l1] and [l1 7→ λx.l2, l2 7→ λy.λx.l2]. No matter
what substitutions we perform on the two records, they cannot reduce to a
common one since in the first one both component will reference l1, and in the
second component they will both reference l2.

Note that both reductions in this example are non-evaluation steps.

3 Confluence of ⇒
Lemma 3.1. C1{C2} = E if and only if both C1 and C2 are evaluation contexts.

Proof. By induction on the structure of an evaluation context.

Lemma 3.2. If E1{R1} = E2{R2}, where R1, R2 are redexes, then either

• E1 = E2 and R1 = R2 or

• R1 = E′{•}, R2 = E′′{•}, and R1 = E′′′{R2} or R2 = E′′′{R1}.

Proof. By the induction on the structure of a term using lemma 3.1.

Lemma 3.2 is effectively saying that, with the exception of the black hole
case, there may be at most one redex in an evaluation context in a term. Black
hole redexes in an evaluation contexts may be nested within the same term.

Lemma 3.3. If M = E1{l1} = E2{l2} then E1 = E2 and l1 = l2 and M 6= E{R}
for any E and R.

Proof. By the induction on the structure of a term using lemma 3.1.

Theorem 3.4 (One-step confluence of ⇒). If D1 ⇒ D2 and D1 ⇒ D3 then
there exists D4 s.t. D2 =⇒∗ D4 and D3 =⇒∗ D4.

This property is also known as weak confluence.

Proof. The proof is by cases on pairs of given evaluation steps. They are labeled
by the rules, e.g. (TS) stands for the case when one of the steps is a term
reduction (T) and the other one a substitution (S). Note that the cases are
symmetric, i.e. (TS) is the same as (ST).

When considering cases, we often skip those where the two steps occur in
two different components and do not depend on each other in any way since
in these case the one-step confluence diagram can be trivially completed. For
convenience we mark each step with the name of the rule that it follows. Even
though these are evaluation steps, we use T and S instead of TE and SE for the
rule names for simplicity.

3

UMM Working Papers

• (TT): Case 1: the case when the two evaluations happen in different com-
ponents of a record is trivial, and the confluence diagram can be trivially
completed.

Case 2: By lemma 3.2 the only case when the two evaluations happen in
the same component is when the term reduction “destroys” an evaluation
context around a black hole. In this case E1{•} = E2{E3{•}}, where
E1{•} is the redex of one evaluation step, and E3{•} is the redex of the
other (directly follows from lemma 3.2):

[l1 7→ E{E1{•}}, . . .]
T⇒

[l1 7→ E{•}, . . .]

[l1 7→ E{E2{E3{•}}}, . . .]
T⇒

[l1 7→ E{E2{•}}, . . .]
T⇒

[l1 7→ E{•}, . . .]

• (TS):
[l1 7→ E1{M1}, l2 7→ E2{l1}]

S⇒
[l1 7→ E1{M1}, l2 7→ E2{E1{M1}}]

T⇒ T⇒
[l1 7→ E1{M ′

1}, l2 7→ E2{E1{M ′
1}}]

[l1 7→ E1{M1}, l2 7→ E2{l1}]
T⇒

[l1 7→ E1{M ′
1}, l2 7→ E2{l1}]

S⇒
[l1 7→ E1{M ′

1}, l2 7→ E2{E1{M ′
1}}]

• (TB): The black hole can not be in the same component as the term
reduction by lemma 3.3. that we are reducing. Trivially completion of
confluence diagram similarly to (TT)

[l1 7→ E{l1}, l2 7→M] T⇒
[l1 7→ E{l1}, l2 7→M ′] B⇒
[l1 7→ E{•}, l2 7→M ′

[l1 7→ E{l1}, l2 7→M] B⇒
[l1 7→ E{•}, l2 7→M] T⇒
[l1 7→ E{•}, l2 7→M ′]

• (SS): By lemma 3.3 the two substitutions must happen in two different
record components, i.e. the starting record has a form]l1 7→ E1{l′}, l2 7→
E1{l′′} . . .]. It must be the case that l′ 6= l1 and l′′ 6= l2, otherwise one
the steps would be a black hole step. We have the following cases (where
all li are distinct labels):

1. l′ = l3, l
′′ = l4,

4

Call-by-name Calculus of Records

2. l′ = l′′ = l3,
3. l′ = l2, l

′′ = l1.

Below are proofs for each of the three cases. Case 1: Trivial confluence
diagram in this case:

[l1 7→ E1{l3}, l2 7→ E2{l4}, l3 7→M1, l4 7→M2]

Case 2: This one also trivially produces the confluence diagram:

[l1 7→ E{l3}, l2 7→ E{l3}, l3 7→M]

Case 3: If two labels depend on each other, both components become
black holes:

[l1 7→ E1{l2}, l2 7→ E2{l1} . . .] S⇒
[l1 7→ E1{E2{l1}}, l2 7→ E2{l1} . . .] B⇒ T⇒
[l1 7→ •, l2 7→ E2{l1} . . .] S⇒
[l1 7→ •, l2 7→ E2{•} . . .] T⇒
[l1 7→ •, l2 7→ • . . .]

[l1 7→ E1{l2}, l2 7→ E2{l1} . . .] S⇒
[l1 7→ E1{l2}, l2 7→ E2{E1{l2}} . . .] B⇒ T⇒
[l1 7→ E1{l2}, l2 7→ • . . .] S⇒
[l1 7→ E1{•}, l2 7→ • . . .] T⇒
[l1 7→ •, l2 7→ • . . .]

The T cases here are the term “black hole” rule - the one that allows
a black hole to consume an evaluation context around itself. We used
lemma 3.1 to justify both B steps.

• (SB): One redex involves a substitution, the other a black hole.

Case 1: Trivially Confluent.

[l1 7→ E1{l1}, l2 7→ E2{l3}, l3 7→M]

Case 2:
[l1 7→ E1{l1}, l2 7→ E2{l1}]

S⇒
[l1 7→ E1{l1}, l2 7→ E2{E1{l1}}]

B⇒ T⇒
[l1 7→ •, l2 7→ E1{E1{l1}}]

S⇒
[l1 7→ •, l2 7→ E1{E1{•}}]

T⇒
[l1 7→ •, l2 7→ E2{•}]

[l1 7→ E1{l1}, l2 7→ E2{l1}]
B⇒ T⇒

[l1 7→ •, l2 7→ E2{l1}]
S⇒

[l1 7→ •, l2 7→ E2{•}]

5

UMM Working Papers

• (BB) The two evaluation steps must be in different components by lemma 3.3.

Weak confluence does not imply confluence because of a possibility of diver-
gence of inductive diagrams. Below we show that divergence is not possible in
our case.

Theorem 3.5. In the calculus of records ⇒ is confluent, i.e. given D1 =⇒∗ D2

and D1 =⇒∗ D3 there exists D4 s.t. D2 =⇒∗ D4 and D3 =⇒∗ D4.

Proof. In most cases of the proof of weak confluence given D1 ⇒ D2 and D1 ⇒
D3, there exists D4 s.t. D2 ⇒? D4 and D3 ⇒? D4 (recall that ⇒? stands for
reflexive closure of ⇒). This means that tiling the weak confluence diagrams
leads to the proof of confluence without a possibility of divergence.

Below we consider the cases for which the property given in the previous
paragraph does not hold and show that none of these cases cause divergence.

• (TS) In this case the T step may be duplicated by the substitution, but
the S steps are not duplicated by the term reduction. The worst case
scenario, therefore, looks like this:

• S +3

T

��

• S +3

T

��

• S +3

T

��

• . . .

• S +3

T

��

• . . .

• S +3

T

��

• S +3

T

��

• . . .

• S +3

T

��

• . . .

• S +3 • S +3 • S +3 • . . .

We observe that⇒ steps in this case satisfy the strip lemma (see [4]), and
the strip lemma implies confluence of the relation.

• (SS) case 3. In this case the extra evaluation steps are added when two
components depend on each other and both become black holes. The
two extra steps are the black hole step and the term evaluation step that
consumes the evaluation context around a black hole. Both steps can be
repeated only a finite number of times since there is a limit on the number
of black hole evaluation steps in a record: a record have no more black
holes than the number of components, and once a black hole “consumes”
a context around itself, there is no way to add something to the context
that it’s in. Therefore there is only a finite number of extra step related
to black holes (B and the black hole TE steps) that a record may possibly
generate, and thus such steps cannot cause divergence.

6

Call-by-name Calculus of Records

• (SB) case 2. Analogous to the previous case.

4 The Elementary Lift/Project Property

Definition 4.1. A calculus has an elementary lift/project property if, given
M1 ⇒ M2 and M1 ↪→ M3 or M3 ↪→ M1, there exists M4 s.t. M3 ⇒ M4 and
M2 ↔M4.

Theorem 4.2. The call-by-name calculus of records has the elementary lift/project
property.

Lemma 4.3. If M = C{R}, where R is a redex, it cannot be the case that
R = C{R′}, R′ is a redex, and C{C} is an evaluation context.

Proof. By induction on the structure of a term.

Intuitively lemma 4.3 says that a non-evaluation redex cannot contain an
evaluation redex.

Proof. The proof is by cases on the pairs of given reductions: an evaluation
step and a non-evaluation step. By convention the rules are denoted so that the
names of the non-evaluation step is first. For instance, (TS) denotes the case
when the non-evaluation step is a term reduction, and the evaluation step is a
substitution.

We use a 2-hole context notation to show a relative position of two non-
nested subterms in a term. We use the same notation as the one hole context,
C to denote a two-hole context. For instance, λx.x + 5 can be seen as a two
hole context λx.� + � filled with terms x and 5 (in this order). We also use
multi-hole context notation, again denoting the context as C. The definition is
obvious.

For other notations see section 2.1.
By convention if a 2-hole context contains a redex in an evaluation context

and a redex in another context, the evaluation redex/context pair is shown first.
Note that by lemmas 3.2 and 3.3 there is at most one evaluation step from any
component if not counting the black hole term redex (the case when a black
hole “consumes” a context around itself).

• (TT) If the two reductions are in different components, the property
clearly holds. Let us consider cases when the two reductions are in the
same component. Recall that we have three cases of term reduction: ap-
plication, operation, and the black hole. Note that an operation redex
c1 + c2 cannot contain another redex.

Below are all cases of non-trivial interactions of term reductions in the
same component.

7

UMM Working Papers

Case 1: non-overlapping redexes.

[l1 7→ C1{E{R1}, C2{R2}}]
T⇒

[l1 7→ C1{E{Q1}, C2{R2}}]
T→

[l1 7→ C1{E{Q1}, C2{Q2}}]

[l1 7→ C1{E{R1}, C2{R2}}]
T
↪→

[l1 7→ C1{E{R1}, C2{Q2}}]
T⇒

[l1 7→ C1{E{Q1}, C2{Q2}}]

Case 2: the non-evaluation redex R is contained in the body of an appli-
cation.

[l1 7→ E{λx.C{x, ..., x, R} @ M}] T⇒
[l1 7→ E{C{M, ..., M, R}}] T→
[l1 7→ E{C{M, ..., M, Q}}]

[l1 7→ E{λx.C{x, ..., x, R} @ M}] T
↪→

[l1 7→ E{λx.C{x, ..., x, Q} @ M}] T⇒
[l1 7→ E{C{M, ..., M, Q}}]

Case 3: the non-evaluation redex R is contained in the argument of the
application.

[l1 7→ E{λx.C1{x, ..., x} @ C2{R}}]
T⇒

[l1 7→ E{C1{C2{R}, ..., C2{R}}}]
T

−→∗

[l1 7→ E{C1{C2{Q}, ..., C2{Q}}}]
[l1 7→ E{λx.C1{x, ..., x} @ C2{R}}]

T
↪→

[l1 7→ E{λx.C1{x, ..., x} @ C2{Q}}]
T⇒

[l1 7→ E{C1{C2{Q}, ..., C2{Q}}}]

Case 4: The non-evaluation redex is contained in the evaluation con-
text consumed by the black hole, i.e. the black hole redex E1{•} =
C1{E2{•}, C2{R}}. The outer context must be an evaluation context by
lemma 3.1.

[l1 7→ E{C1{E2{•}, C2{R}}}]
T⇒

[l1 7→ E{•}]

[l1 7→ E{C1{E2{•}, C2{R}}}]
T
↪→

[l1 7→ E{C1{E2{•}, C2{Q}}}]
T⇒

[l1 7→ E{•}]

• (TS) Term reduction is non-evaluation, substitution is evaluation. Again,
we are skipping cases where the two reductions obviously don’t interact.

8

Call-by-name Calculus of Records

Case 1:
[l1 7→ C1{E{l2}, C2{R}}, l2 7→M] S⇒
[l1 7→ C1{E{M}, C2{R}}, l2 7→M] T→
[l1 7→ C1{E{M}, C2{Q}}, l2 7→M]

[l1 7→ C1{E{l2}, C2{R}}, l2 7→M]
T
↪→

[l1 7→ C1{E{l2}, C2{Q}}, l2 7→M] S⇒
[l1 7→ C1{E{M}, C2{Q}}, l2 7→M]

Case 2:

[l1 7→ E{l2}, l2 7→ C1{R}]
S⇒

[l1 7→ E{C1{R}}, l2 7→ C1{R}]
T
↪→ T

↪→
[l1 7→ E{C1{Q}}, l2 7→ C1{Q}]
[l1 7→ E{l2}, l2 7→ C1{R}]

T
↪→

[l1 7→ E{l2}, l2 7→ C1{Q}]
S⇒

[l1 7→ E{C1{Q}}, l2 7→ C1{Q}]

Note that the non-evaluation redex cannot contain the label that the sub-
stitution step substitutes into since the label must appear in an evaluation
context. This is a consequence of lemma 3.1.

• (TB).

Case 1: Trivial:
[l1 7→ E1{l1}, l2 7→ C{R}]

Case 2:
[l1 7→ C1{E{l1}, C2{R1}}]

B⇒
[l1 7→ C1{E{•}, C2{R1}}]

T
↪→

l1 7→ C1{E{•}, C2{Q1}}]

[l1 7→ C1{E{l1}, C2{R1}}]
T
↪→

[l1 7→ C1{E{l1}, C2{Q1}}]
B⇒

[l1 7→ C1{E{•}, C2{Q1}}]

No other cases are possible for the same reason as for (TS).

• (ST) We are skipping some trivial cases.

9

UMM Working Papers

Case 1:
[l1 7→ E{R}, l2 7→ C{l1}]

T⇒
[l1 7→ E{Q}, l2 7→ C{l1}]

S
↪→

[l1 7→ E{Q}, l2 7→ C{E{Q}}]

[l1 7→ E{R}, l2 7→ C{l1}]
S
↪→

[l1 7→ E{R}, l2 7→ C{E{R}}] T⇒ T
↪→

[l1 7→ E{Q}, l2 7→ C{E{Q}}]

Case 2:

[l1 7→ E{λx.C1{x, . . . , x} @ C2{l2}}, l2 7→M] T⇒
[l1 7→ E{C1{C2{l2}, . . . , C2{l2}}}, l2 7→M]

S
↪→ . . .

S
↪→

[l1 7→ E{C1{C2{M}, . . . , C2{M}}}, l2 7→M]

[l1 7→ E{λx.C1{x, . . . , x} @ C2{l2}}, l2 7→M]
S
↪→

[l1 7→ E{λx.C1{x, . . . , x} @ C2{M}}, l2 7→M] T⇒
[l1 7→ E{C1{C2{M}, . . . , C2{M}}}, l2 7→M]

Case 3:
[l1 7→ C1{E1{R1}, C2{l2}}, l2 7→M] T⇒
[l1 7→ C1{E1{Q1}, C2{l2}}, l2 7→M] S→
[l1 7→ C1{E1{Q1}, C2{M}}, l2 7→M]

[l1 7→ C1{E1{R1}, C2{l2}}, l2 7→M]
S
↪→

[l1 7→ C1{E1{R1}, C2{M}}, l2 7→M] T⇒
[l1 7→ C1{E1{Q1}, C2{M}}, l2 7→M]

Case 4:

[l1 7→ C1{E1{R1}, C2{l1}}]
T⇒

[l1 7→ C1{E1{Q1}, C2{l1}}]
S→

[l1 7→ C1{E1{Q1}, C2{C1{E1{Q1}, C2{l1}}}}]
[l1 7→ C1{E1{R1}, C2{l1}}]

S
↪→

[l1 7→ C1{E1{R1}, C2{C1{E1{R1}, C2{l1}}}}]
T⇒ T→

[l1 7→ C1{E1{Q1}, C2{C1{E1{Q1}, C2{l1}}}}]

10

Call-by-name Calculus of Records

Case 5: The label is nested within the evaluation redex

[l1 7→ E{λx.C1{l1, x, . . . , x} @ M}] T⇒
[l1 7→ E{C1{l1,M, . . . ,M}}] S

↪→
[l1 7→ E{C1{E{C1{l1,M, . . . ,M}},M, . . . ,M}}]

[l1 7→ E{λx.C1{l1, x, . . . , x} @ M}] S
↪→

[l1 7→ E{λx.C1{E{λx.C1{l1, x, . . . , x} @ M}, x, . . . , x} @ M}] T⇒ T→
[l1 7→ E{C1{E{C1{l1,M, . . . ,M}},M, . . . ,M}}

Case 6: The label is nested within the evaluation redex.

[l1 7→ E{λx.C1{x, . . . , x} @ C2{l1}}]
T⇒

[l1 7→ E{C1{C2{l1}, . . . , C2{l1}}}]

[l1 7→ E{λx.C1{x, . . . , x} @ C2{l1}}]
S
↪→

[l1 7→ E{λx.C1{x, . . . , x} @ C2{E{λx.C1{x, . . . , x} @ C2{l1}}}}]

Before we continue the proof for this case, we introduce a multi-substitution
transformation which we abbreviate MS. This sequence of forward and
backward term and substitution steps on a single component allows us to
substitute the value of the entire component into several labels at once.

Definition 4.4. Let C{l, . . . , l} be a multi-hole context with all holes filled
by a term l. D1 = [l 7→ C{l, . . . , l}, . . .] MS→ [l 7→ C{C{l, . . . , l}, . . . , C{l, . . . , l}}, . . .] =
D2 is called a multi-substitution step. Note that C does not have to con-
tain all occurrences of l in the component, there may be other occurrences
not captured by C.

Lemma 4.5. MS→ can be represented as a sequence of forward and back-
ward term and substitution steps on the component.

Proof.

[l 7→ C{l, . . . , l}, . . .] T⇐
[l 7→ (λx.C{x, . . . , x}) @ l, . . .]

S
↪→

[l 7→ (λx.C{x, . . . , x}) @ ((λx.C{x, . . . , x}) @ l), . . .]
T
↪→

[l 7→ (λx.C{x, . . . , x}) @ C{l, . . . , l}, . . .] T⇒
[l 7→ C{C{l, . . . , l}, . . . C{l, . . . , l}}, . . .]

In the first step the name x is chosen in such a way that no free variables
of the term are captured.

Intuitively, the multi-substitution replaces multiple copies of a self-reference
in a record component by a single reference. It is hard (if not impossible)

11

UMM Working Papers

to keep multiple copies of a self-referring labels “synchronized” if they are
replaced one-by-one. However, reducing them to a single copy by a back-
ward term reduction step and them substituting allows us to keep all of
these labels “in synch”. Example 4.6 with a single copy of a self-reference
served as a motivation for the multi-substitution step.

Now we continue case 6 using the multi-substitution:

[l1 7→ E{λx.C1{x, . . . , x} @ C2{l1}}]
T⇒

[l1 7→ E{C1{C2{l1}, . . . , C2{l1}}}]
MS→

[l1 7→ E{C1{C2{E{C1{C2{l1}, . . . , C2{l1}}}}, . . . , C2{E{C1{C2{l1}, . . . , C2{l1}}}}}}]

[l1 7→ E{λx.C1{x, . . . , x} @ C2{l1}}]
S
↪→

[l1 7→ E{λx.C1{x, . . . , x} @ C2{E{λx.C1{x, . . . , x} @ C2{l1}}}}]
T
↪→

[l1 7→ E{λx.C1{x, . . . , x} @ C2{E{C1{C2{l1}, . . . , C2{l1}}}}}]
T⇒

[l1 7→ E{C1{C2{E{C1{C2{l1}, . . . , C2{l1}}}}, . . . , C2{E{C1{C2{l1}, . . . , C2{l1}}}}}}]

Case 7: The cases of interactions between a term black hole reduction
and a substitution step (omitting the case when the two steps appear in
unrelated components) are listed below. The diagrams can be trivially
completed.

[l1 7→ C1{E{•}, C2{l1}}]
[l1 7→ E{•}, l2 7→ C{l1}]

• (SS) There are many different mutual positions of the two labels in this
case. We list all of them and show proofs for the non-trivial ones. Recall
that a label depending on itself in an evaluation context is a black hole
reduction, not a substitution.

Unfortunately, when two labels depend on each other, one in an evaluation
context, and the other in a non-evaluation one (i.e. the record is [l1 7→
E{l2}, l2 7→ C{l1}]) the system does not have a non-trivial completion
of the diagram. The only way to complete the diagram is to reverse
the original reductions. Therefore, the system effectively fails the desired
property.

Cases include:

[l1 7→ E{l2}, l2 7→M1, l3 7→ C{l4}, l4 7→M2] Trivial
[l1 7→ E{l3}, l2 7→ C{l3}, l3 7→M] Trivial
[l1 7→ E{l2}, l2 7→ C{l3}, l3 7→M] Case 1 below
[l1 7→ E{l3}, l2 7→ C{l1}, l3 7→M] Case 2 below
[l1 7→ E{l3}, l2 7→ C{l2}, l3 7→M] Trivial
[l1 7→ E{l2}, l2 7→ C{l1}] Case 3 below - no non-trivial completion
[l1 7→ E{l2}, l2 7→ C{l2}] Case 4 below
[l1 7→ C1{E{l2}, C2{l3}}, l2 7→M1, l3 7→M2] Trivial
[l1 7→ C1{E{l2}, C2{l2}}, l2 7→M] Case 5 below
[l1 7→ C1{E{l2}, C2{l1}}, l2 7→M] Case 6 below

12

Call-by-name Calculus of Records

There are no cases when l1 depends on itself in an evaluation context
(such as [l1 7→ C1{E{l1}, C2{l1}})] since these cases are black hole cases,
not substitutions.

Case 1:
[l1 7→ E{l2}, l2 7→ C{l3}, l3 7→M] S⇒
[l1 7→ E{C{l3}}, l2 7→ C{l3}, l3 7→M]

S
↪→ S

↪→
[l1 7→ E{C{M}}, l2 7→ C{M}, l3 7→M]

[l1 7→ E{l2}, l2 7→ C{l3}, l3 7→M]
S
↪→

[l1 7→ E{l2}, l2 7→ C{M}, l3 7→M] S⇒
[l1 7→ E{C{M}}, l2 7→ C{M}, l3 7→M]

Case 2:
[l1 7→ E{l3}, l2 7→ C{l1}, l3 7→M] S⇒
[l1 7→ E{M}, l2 7→ C{l1}, l3 7→M]

S
↪→

[l1 7→ E{M}, l2 7→ C{E{M}}, l3 7→M]

[l1 7→ E{l3}, l2 7→ C{l1}, l3 7→M]
S
↪→

[l1 7→ E{l3}, l2 7→ C{E{l3}}, l3 7→M] S⇒ S
↪→

[l1 7→ E{M}, l2 7→ C{E{M}}, l3 7→M]

Case 3:
[l1 7→ E{l2}, l2 7→ C{l1}]

S⇒
[l1 7→ E{C{l1}}, l2 7→ C{l1}]

S⇐
[l1 7→ E{l2}, l2 7→ C{l1}]

S←↩
[l1 7→ E{l2}, l2 7→ C{E{l2}}]

[l1 7→ E{l2}, l2 7→ C{l1}]
S
↪→

[l1 7→ E{l2}, l2 7→ C{E{l2}}]
S⇐

[l1 7→ E{l2}, l2 7→ C{l1}]

Unfortunately, in general this is a trivial completion of the diagram (see
example 4.7 for the case that proves it). While it formally satisfies the
elementary lift/project property, it does not allow us to make progress on
the inductive proof.

13

UMM Working Papers

Case 4:
[l1 7→ E{l2}, l2 7→ C{l2}]

S⇒
[l1 7→ E{C{l2}}, l2 7→ C{l2}]

S
↪→

[l1 7→ E{C{C{l2}}}, l2 7→ C{l2}
S
↪→

[l1 7→ E{C{C{l2}}}, l2 7→ C{C{l2}}

[l1 7→ E{l2}, l2 7→ C{l2}]
S
↪→

[l1 7→ E{l2}, l2 7→ C{C{l2}}]
S⇒

[l1 7→ E{C{C{l2}}}, l2 7→ C{C{l2}}

Case 5:
[l1 7→ C1{E{l2}, C2{l2}}, l2 7→M] S⇒
[l1 7→ C1{E{M}, C2{l2}}, l2 7→M] S→
[l1 7→ C1{E{M}, C2{M}}, l2 7→M]

[l1 7→ C1{E{l2}, C2{l2}}, l2 7→M]
S
↪→

[l1 7→ C1{E{l2}, C2{M}}, l2 7→M] S⇒
[l1 7→ C1{E{M}, C2{M}}, l2 7→M]

Case 6:

[l1 7→ C1{E{l2}, C2{l1}}, l2 7→M] S⇒
[l1 7→ C1{E{M}, C2{l1}}, l2 7→M]

S
↪→

[l1 7→ C1{E{M}, C2{C1{E{M}, C2{l1}}}}, l2 7→M]

[l1 7→ C1{E{l2}, C2{l1}}, l2 7→M]
S
↪→

[l1 7→ C1{E{l2}, C2{C1{E{l2}, C2{l1}}}}, l2 7→M] S⇒ S→
[l1 7→ C1{E{M}, C2{C1{E{M}, C2{l1}}}}, l2 7→M]

• (SB)

Case1:

[l1 7→ E{l1}, l2 7→ C{l1}]
B⇒

[l1 7→ E{•}, l2 7→ C{l1}]
S
↪→

[l1 7→ E{•}, l2 7→ C{E{•}}]

[l1 7→ E{l1}, l2 7→ C{l1}]
S
↪→

[l1 7→ E{l1}, l2 7→ C{E{l1}}]
B⇒

[l1 7→ E{•}, l2 7→ C{E{l1}}]
S⇒

[l1 7→ E{•}, l2 7→ C{E{E{•}}}] T⇒
[l1 7→ E{•}, l2 7→ C{E{•}}]

14

Call-by-name Calculus of Records

Case 2:

[l1 7→ C{E{l1}, C2{l1}}]
B⇒

[l1 7→ C{E{•}, C2{l1}}]
T⇒

[l1 7→ •]

[l1 7→ C{E{l1}, C2{l1}}]
S
↪→

[l1 7→ C{E{l1}, C2{C{E{l1}, C2{l1}}}}]
B⇒

[l1 7→ C{E{•}, C2{C{E{l1}, C2{l1}}}}]
T⇒

[l1 7→ •]
Here • appears in an evaluation context, and therefore the whole compo-
nent becomes a black hole.

Example 4.6. Example of the ST case from the above proof. There is only one
copy of l1 in the term bound to l1. This makes it easier to “synchronize” the
term after the two different reductions.

[l1 7→ (λx.λy.l1) @ 2] T⇒
[l1 7→ λy.l1]

S
↪→

[l1 7→ λy.λy.l1]

[l1 7→ (λx.λy.l1) @ 2]
S
↪→

[l1 7→ (λx.λy.(λx.λy.l1) @ 2) @ 2] T⇒
[l1 7→ λy.((λx.λy.l1) @ 2)]

T
↪→

[l1 7→ λy.λy.l1]

Example 4.7 (Mutually Recursive Substitutions Fail Lift/Project). The fol-
lowing example illustrates that there is no non-trivial completion of the el-
ementary lift/project diagram for two mutually recursive components, where
one step is an evaluation step, and the other one is a non-evaluation step
[l1 7→ E{l2}, l2 7→ C{l1}]:

[l1 7→ l2 + 1, l2 7→ λx.l1
S⇒

[l1 7→ (λx.l1) + 1, l2 7→ λx.l1

[l1 7→ l2 + 1, l2 7→ λx.l1
S
↪→

[l1 7→ l2 + 1, l2 7→ λx.l2 + 1

Since in the result of the evaluation step both components reference l1 and in
the result of a non-evaluation step both components reference l2, no substitu-
tion can bring the two records together. Therefore it is unlikely that there is
a non-trivial1 completion of the elementary lift/project diagram, and a trivial

1i.e. the one that does not reverse both steps

15

UMM Working Papers

completion cannot be incorporated into an inductive proof since no progress on
evaluation has been made.

Note that the example is different from the case of two evaluation substitu-
tion steps [l1 7→ E{l2}, l2 7→ E{l1}] where both components become black holes.
It is also different from the non-confluence example in section 2.2 since in that
example both steps are non-evaluation steps which does not affect the proof of
the elementary lift/project property.

5 Conclusions

It turns out that in the call-by-name calculus of records the non-confluence
extends to the case when one reduction is an evaluation step, and the other
one is a non-evaluation step. This prevents us from using even the extended
lift/project proof method (as described in [6]) for proving meaning-preservation
of reduction-based transformation in this calculus. Note that failure to apply a
specific proof method does not imply that reduction-based transformations are
not meaning preserving. In fact, there is a reason to believe that the transfor-
mations may be meaning-preserving up to information contents, as in [1].

16

Call-by-name Calculus of Records

Bibliography

[1] Z. M. Ariola, Stefan Blom. Skew confluence and the lambda calculus with
letrec. Annals of pure and applied logic 117/1-3, 97-170, 2002.

[2] Z. M. Ariola and J.W. Klop. Cyclic Lambda Graph Rewriting. In Proc. of
the Eight IEEE Symposium on Logic in Computer Science, Paris, July 1994.

[3] Z. M. Ariola and J. W. Klop. Equational Term Graph Rewriting. Funda-
mentae Informaticae, Vol. 26, Nrs. 3,4, June 1996. p. 207-240.

[4] H. P. Barendregt: The Lambda Calculus, its Syntax and semantics. Studies
in Logic, volume 103, Elsevier Science Publishers, 1984.

[5] E. Machkasova: Ph.D dissertation Computational Soundness of Non-
Confluent Calculi with Applications to Modules and Linking, April 2002,
Boston University

[6] J. B. Wells, Detlef Plump, and Fairouz Kamareddine: Diagrams for meaning
preservation. In Rewriting Techniques & Applications, 14th Int’l Conf., RTA
2003, volume 2706 of LNCS, pp. 88-106. Springer-Verlag, 2003

17

UMM Working Papers

A Call-by-name Calculus of Records and its Basic

Properties

Elena Machkasova, Emily Christiansen
University of Minnesota, Morris

July 17, 2006

Call-by-name Calculus of Records

1 Introduction

This technical report contains definitions and proofs of properties of a call-by-
name calculus of records. The purpose of the calculus is to describe unordered
collections of (possibly mutually recursive) named components. The system
resembles a call-by-value calculus of records defined in [5], but the proof method
used in [5] (based on the lift and project properties) as well as an extension of
this method given in [6] fail for this calculus.

In this document we present the following:

1. the definition of the calculus - section 2.1.

2. the proof of confluence of evaluation relation in the calculus - section 3.

3. an attempt of a proof of the elementary lift/project diagram, as defined
in [6] - section 4. The section defines and proves the elementary lift/project
property (see 4.1). Unfortunately, the proof fails to find a non-trivial com-
pletion of the elementary lift/project diagram for the case of interaction of
two substitutions in mutually recursive components: one in an evaluation
context and the other one in a non-evaluation context. See case 3 of the
two substitutions (SS) case of the proof of theorem 4.2.

The completion of the diagram is trivial in the sense that it simply reverses
both steps, which technically satisfies the property 4.1, but clearly does
not allow for incorporating into an inductive proof (with the induction on
the number of evaluation steps, as in the approach in [5]) or for proving
termination properties, as in the approach in [6]. Example 4.7 shows why
a non-trivial completion of the diagram is not possible.

This document does not discuss goals, motivation, and the framework. See
other work by the authors for such a discussion ([5] contains the most compre-
hensive discussion).

2 Definitions

2.1 Call by Name Calculus of Records

The calculus is a two level system: the term level and the record level. Sets
whose names start with T are at the term level, those that start with R are at
the record level.

Definition 2.1. The calculus of records is defined as follows:

M ∈ TTerm ::= c | x | l | • | λx.M |M1 @ M2 |M1 + M2

C ∈ TContext ::= � | λx.C | C @ M |M @ C | C + M |M + C
E ∈ TEvalContext ::= � | E @ M | c + E | E + M
D ∈ RTerm ::= [l1 7→M1, ..., ln 7→Mn], li 6= lj if i 6= j
D ∈ RContext ::= [l1 7→ C, l2 7→M2, ..., ln 7→Mn]
G ∈ REvalContext ::= [l1 7→ E, l2 7→M2, ..., ln 7→Mn]

1

UMM Working Papers

Here M,N ∈ TTerm stands for terms, c are constants, x, y, z are variables
(distinct from constants), l stands for labels (distinct from variables and con-
stants), • is a black hole, λx.M is a lambda abstraction, M1 @ M2 is a function
application, M1 + M2 is a binary operation on terms, � is a context hole, C is
a general term context, E is a term evaluation context, D ∈ Rterm is a record,
l 7→ M is a binding (a component) in a record, where the term M is bound to
the label l, D is a general record context, and G is a record evaluation context.
We also use notation C for a term non-evaluation context, i.e. by definition
C ∈ TContext\TEvalContext. Likewise D is a record non-evaluation context
defined as D ∈ RContext\REvalContext.

Both levels of the calculus follow the call-by-name reduction strategy. We
define a reduction relation → and evaluation relation ⇒. On terms ⇒⊂→⊆
TTerm × TTerm, on records ⇒⊂→⊆ RTerm × RTerm. For both calculi
↪→=→ \ ⇒. Note that we use the same notations for the relations at the term
and at the record level.
Term Calculus Rules:

λx.M @ N M [x := N]
c1 + c2 c3 where c3 is the result of operation
E{•} •
E{R} ⇒ E{Q} where R Q
C{R} → C{Q} where R Q

Definition 2.2. The term included in the context on the left-hand side of the
term calculus rules above is called the redex of the corresponding reduction. We
use R as a metavariable for a redex.

Intuitively, the redex is the subterm that gets reduced by the reduction. It
is included in the context that remains unchanged by the reduction. Example:
in the reduction λx.2 + • → λx.• the redex is 2 + •. In the evaluation step
1 + λx.x @ 3⇒ 1 + 3 the redex is λx.x @ 3.
Record Calculus Rules:
We use [li

n7→
i=1

Mi] as the abbreviation for [l1 7→M1, ..., ln 7→Mn], l ↓M to denote

that in the record the term M is bound to the label l, i.e. the record contains
a binding l 7→M .

G{R} ⇒ G{Q} where R Q (TE)
G{l} ⇒ G{N} where l ↓ N , G 6= [l 7→ E, . . .] (SE)
D{R} → D{Q} where R Q (T)
D{l} → D{N} where l ↓ N (S)
[l1 7→ E{l1}, ...] ⇒ [l1 7→ E{•}, ...] (B)

Definition 2.3 (Notations for closures). 1. −→∗, =⇒∗, ↪→∗ stand for re-
flexive transitive closures of the respective relations.

2. →?, ⇒?, and ↪→? stand for reflexive closures of the respective relations.

3. ↔ stands for the reflexive symmetric transitive closure of →.

2

Call-by-name Calculus of Records

2.2 Non-confluence of →
This calculus has the same example of non-confluence as its call-by-value version
described in [5]. Originally this example was described in [2] in a somewhat
different system. The record [l1 7→ λx.l2, l2 7→ λy.l1] has two non-evaluation
substitution redexes. By choosing each of the two redexes we obtain these two
records: [l1 7→ λx.λy.l1, l2 7→ λy.l1] and [l1 7→ λx.l2, l2 7→ λy.λx.l2]. No matter
what substitutions we perform on the two records, they cannot reduce to a
common one since in the first one both component will reference l1, and in the
second component they will both reference l2.

Note that both reductions in this example are non-evaluation steps.

3 Confluence of ⇒
Lemma 3.1. C1{C2} = E if and only if both C1 and C2 are evaluation contexts.

Proof. By induction on the structure of an evaluation context.

Lemma 3.2. If E1{R1} = E2{R2}, where R1, R2 are redexes, then either

• E1 = E2 and R1 = R2 or

• R1 = E′{•}, R2 = E′′{•}, and R1 = E′′′{R2} or R2 = E′′′{R1}.

Proof. By the induction on the structure of a term using lemma 3.1.

Lemma 3.2 is effectively saying that, with the exception of the black hole
case, there may be at most one redex in an evaluation context in a term. Black
hole redexes in an evaluation contexts may be nested within the same term.

Lemma 3.3. If M = E1{l1} = E2{l2} then E1 = E2 and l1 = l2 and M 6= E{R}
for any E and R.

Proof. By the induction on the structure of a term using lemma 3.1.

Theorem 3.4 (One-step confluence of ⇒). If D1 ⇒ D2 and D1 ⇒ D3 then
there exists D4 s.t. D2 =⇒∗ D4 and D3 =⇒∗ D4.

This property is also known as weak confluence.

Proof. The proof is by cases on pairs of given evaluation steps. They are labeled
by the rules, e.g. (TS) stands for the case when one of the steps is a term
reduction (T) and the other one a substitution (S). Note that the cases are
symmetric, i.e. (TS) is the same as (ST).

When considering cases, we often skip those where the two steps occur in
two different components and do not depend on each other in any way since
in these case the one-step confluence diagram can be trivially completed. For
convenience we mark each step with the name of the rule that it follows. Even
though these are evaluation steps, we use T and S instead of TE and SE for the
rule names for simplicity.

3

UMM Working Papers

• (TT): Case 1: the case when the two evaluations happen in different com-
ponents of a record is trivial, and the confluence diagram can be trivially
completed.

Case 2: By lemma 3.2 the only case when the two evaluations happen in
the same component is when the term reduction “destroys” an evaluation
context around a black hole. In this case E1{•} = E2{E3{•}}, where
E1{•} is the redex of one evaluation step, and E3{•} is the redex of the
other (directly follows from lemma 3.2):

[l1 7→ E{E1{•}}, . . .]
T⇒

[l1 7→ E{•}, . . .]

[l1 7→ E{E2{E3{•}}}, . . .]
T⇒

[l1 7→ E{E2{•}}, . . .]
T⇒

[l1 7→ E{•}, . . .]

• (TS):
[l1 7→ E1{M1}, l2 7→ E2{l1}]

S⇒
[l1 7→ E1{M1}, l2 7→ E2{E1{M1}}]

T⇒ T⇒
[l1 7→ E1{M ′

1}, l2 7→ E2{E1{M ′
1}}]

[l1 7→ E1{M1}, l2 7→ E2{l1}]
T⇒

[l1 7→ E1{M ′
1}, l2 7→ E2{l1}]

S⇒
[l1 7→ E1{M ′

1}, l2 7→ E2{E1{M ′
1}}]

• (TB): The black hole can not be in the same component as the term
reduction by lemma 3.3. that we are reducing. Trivially completion of
confluence diagram similarly to (TT)

[l1 7→ E{l1}, l2 7→M] T⇒
[l1 7→ E{l1}, l2 7→M ′] B⇒
[l1 7→ E{•}, l2 7→M ′

[l1 7→ E{l1}, l2 7→M] B⇒
[l1 7→ E{•}, l2 7→M] T⇒
[l1 7→ E{•}, l2 7→M ′]

• (SS): By lemma 3.3 the two substitutions must happen in two different
record components, i.e. the starting record has a form]l1 7→ E1{l′}, l2 7→
E1{l′′} . . .]. It must be the case that l′ 6= l1 and l′′ 6= l2, otherwise one
the steps would be a black hole step. We have the following cases (where
all li are distinct labels):

1. l′ = l3, l
′′ = l4,

4

Call-by-name Calculus of Records

2. l′ = l′′ = l3,
3. l′ = l2, l

′′ = l1.

Below are proofs for each of the three cases. Case 1: Trivial confluence
diagram in this case:

[l1 7→ E1{l3}, l2 7→ E2{l4}, l3 7→M1, l4 7→M2]

Case 2: This one also trivially produces the confluence diagram:

[l1 7→ E{l3}, l2 7→ E{l3}, l3 7→M]

Case 3: If two labels depend on each other, both components become
black holes:

[l1 7→ E1{l2}, l2 7→ E2{l1} . . .] S⇒
[l1 7→ E1{E2{l1}}, l2 7→ E2{l1} . . .] B⇒ T⇒
[l1 7→ •, l2 7→ E2{l1} . . .] S⇒
[l1 7→ •, l2 7→ E2{•} . . .] T⇒
[l1 7→ •, l2 7→ • . . .]

[l1 7→ E1{l2}, l2 7→ E2{l1} . . .] S⇒
[l1 7→ E1{l2}, l2 7→ E2{E1{l2}} . . .] B⇒ T⇒
[l1 7→ E1{l2}, l2 7→ • . . .] S⇒
[l1 7→ E1{•}, l2 7→ • . . .] T⇒
[l1 7→ •, l2 7→ • . . .]

The T cases here are the term “black hole” rule - the one that allows
a black hole to consume an evaluation context around itself. We used
lemma 3.1 to justify both B steps.

• (SB): One redex involves a substitution, the other a black hole.

Case 1: Trivially Confluent.

[l1 7→ E1{l1}, l2 7→ E2{l3}, l3 7→M]

Case 2:
[l1 7→ E1{l1}, l2 7→ E2{l1}]

S⇒
[l1 7→ E1{l1}, l2 7→ E2{E1{l1}}]

B⇒ T⇒
[l1 7→ •, l2 7→ E1{E1{l1}}]

S⇒
[l1 7→ •, l2 7→ E1{E1{•}}]

T⇒
[l1 7→ •, l2 7→ E2{•}]

[l1 7→ E1{l1}, l2 7→ E2{l1}]
B⇒ T⇒

[l1 7→ •, l2 7→ E2{l1}]
S⇒

[l1 7→ •, l2 7→ E2{•}]

5

UMM Working Papers

• (BB) The two evaluation steps must be in different components by lemma 3.3.

Weak confluence does not imply confluence because of a possibility of diver-
gence of inductive diagrams. Below we show that divergence is not possible in
our case.

Theorem 3.5. In the calculus of records ⇒ is confluent, i.e. given D1 =⇒∗ D2

and D1 =⇒∗ D3 there exists D4 s.t. D2 =⇒∗ D4 and D3 =⇒∗ D4.

Proof. In most cases of the proof of weak confluence given D1 ⇒ D2 and D1 ⇒
D3, there exists D4 s.t. D2 ⇒? D4 and D3 ⇒? D4 (recall that ⇒? stands for
reflexive closure of ⇒). This means that tiling the weak confluence diagrams
leads to the proof of confluence without a possibility of divergence.

Below we consider the cases for which the property given in the previous
paragraph does not hold and show that none of these cases cause divergence.

• (TS) In this case the T step may be duplicated by the substitution, but
the S steps are not duplicated by the term reduction. The worst case
scenario, therefore, looks like this:

• S +3

T

��

• S +3

T

��

• S +3

T

��

• . . .

• S +3

T

��

• . . .

• S +3

T

��

• S +3

T

��

• . . .

• S +3

T

��

• . . .

• S +3 • S +3 • S +3 • . . .

We observe that⇒ steps in this case satisfy the strip lemma (see [4]), and
the strip lemma implies confluence of the relation.

• (SS) case 3. In this case the extra evaluation steps are added when two
components depend on each other and both become black holes. The
two extra steps are the black hole step and the term evaluation step that
consumes the evaluation context around a black hole. Both steps can be
repeated only a finite number of times since there is a limit on the number
of black hole evaluation steps in a record: a record have no more black
holes than the number of components, and once a black hole “consumes”
a context around itself, there is no way to add something to the context
that it’s in. Therefore there is only a finite number of extra step related
to black holes (B and the black hole TE steps) that a record may possibly
generate, and thus such steps cannot cause divergence.

6

Call-by-name Calculus of Records

• (SB) case 2. Analogous to the previous case.

4 The Elementary Lift/Project Property

Definition 4.1. A calculus has an elementary lift/project property if, given
M1 ⇒ M2 and M1 ↪→ M3 or M3 ↪→ M1, there exists M4 s.t. M3 ⇒ M4 and
M2 ↔M4.

Theorem 4.2. The call-by-name calculus of records has the elementary lift/project
property.

Lemma 4.3. If M = C{R}, where R is a redex, it cannot be the case that
R = C{R′}, R′ is a redex, and C{C} is an evaluation context.

Proof. By induction on the structure of a term.

Intuitively lemma 4.3 says that a non-evaluation redex cannot contain an
evaluation redex.

Proof. The proof is by cases on the pairs of given reductions: an evaluation
step and a non-evaluation step. By convention the rules are denoted so that the
names of the non-evaluation step is first. For instance, (TS) denotes the case
when the non-evaluation step is a term reduction, and the evaluation step is a
substitution.

We use a 2-hole context notation to show a relative position of two non-
nested subterms in a term. We use the same notation as the one hole context,
C to denote a two-hole context. For instance, λx.x + 5 can be seen as a two
hole context λx.� + � filled with terms x and 5 (in this order). We also use
multi-hole context notation, again denoting the context as C. The definition is
obvious.

For other notations see section 2.1.
By convention if a 2-hole context contains a redex in an evaluation context

and a redex in another context, the evaluation redex/context pair is shown first.
Note that by lemmas 3.2 and 3.3 there is at most one evaluation step from any
component if not counting the black hole term redex (the case when a black
hole “consumes” a context around itself).

• (TT) If the two reductions are in different components, the property
clearly holds. Let us consider cases when the two reductions are in the
same component. Recall that we have three cases of term reduction: ap-
plication, operation, and the black hole. Note that an operation redex
c1 + c2 cannot contain another redex.

Below are all cases of non-trivial interactions of term reductions in the
same component.

7

UMM Working Papers

Case 1: non-overlapping redexes.

[l1 7→ C1{E{R1}, C2{R2}}]
T⇒

[l1 7→ C1{E{Q1}, C2{R2}}]
T→

[l1 7→ C1{E{Q1}, C2{Q2}}]

[l1 7→ C1{E{R1}, C2{R2}}]
T
↪→

[l1 7→ C1{E{R1}, C2{Q2}}]
T⇒

[l1 7→ C1{E{Q1}, C2{Q2}}]

Case 2: the non-evaluation redex R is contained in the body of an appli-
cation.

[l1 7→ E{λx.C{x, ..., x, R} @ M}] T⇒
[l1 7→ E{C{M, ..., M, R}}] T→
[l1 7→ E{C{M, ..., M, Q}}]

[l1 7→ E{λx.C{x, ..., x, R} @ M}] T
↪→

[l1 7→ E{λx.C{x, ..., x, Q} @ M}] T⇒
[l1 7→ E{C{M, ..., M, Q}}]

Case 3: the non-evaluation redex R is contained in the argument of the
application.

[l1 7→ E{λx.C1{x, ..., x} @ C2{R}}]
T⇒

[l1 7→ E{C1{C2{R}, ..., C2{R}}}]
T

−→∗

[l1 7→ E{C1{C2{Q}, ..., C2{Q}}}]
[l1 7→ E{λx.C1{x, ..., x} @ C2{R}}]

T
↪→

[l1 7→ E{λx.C1{x, ..., x} @ C2{Q}}]
T⇒

[l1 7→ E{C1{C2{Q}, ..., C2{Q}}}]

Case 4: The non-evaluation redex is contained in the evaluation con-
text consumed by the black hole, i.e. the black hole redex E1{•} =
C1{E2{•}, C2{R}}. The outer context must be an evaluation context by
lemma 3.1.

[l1 7→ E{C1{E2{•}, C2{R}}}]
T⇒

[l1 7→ E{•}]

[l1 7→ E{C1{E2{•}, C2{R}}}]
T
↪→

[l1 7→ E{C1{E2{•}, C2{Q}}}]
T⇒

[l1 7→ E{•}]

• (TS) Term reduction is non-evaluation, substitution is evaluation. Again,
we are skipping cases where the two reductions obviously don’t interact.

8

Call-by-name Calculus of Records

Case 1:
[l1 7→ C1{E{l2}, C2{R}}, l2 7→M] S⇒
[l1 7→ C1{E{M}, C2{R}}, l2 7→M] T→
[l1 7→ C1{E{M}, C2{Q}}, l2 7→M]

[l1 7→ C1{E{l2}, C2{R}}, l2 7→M]
T
↪→

[l1 7→ C1{E{l2}, C2{Q}}, l2 7→M] S⇒
[l1 7→ C1{E{M}, C2{Q}}, l2 7→M]

Case 2:

[l1 7→ E{l2}, l2 7→ C1{R}]
S⇒

[l1 7→ E{C1{R}}, l2 7→ C1{R}]
T
↪→ T

↪→
[l1 7→ E{C1{Q}}, l2 7→ C1{Q}]
[l1 7→ E{l2}, l2 7→ C1{R}]

T
↪→

[l1 7→ E{l2}, l2 7→ C1{Q}]
S⇒

[l1 7→ E{C1{Q}}, l2 7→ C1{Q}]

Note that the non-evaluation redex cannot contain the label that the sub-
stitution step substitutes into since the label must appear in an evaluation
context. This is a consequence of lemma 3.1.

• (TB).

Case 1: Trivial:
[l1 7→ E1{l1}, l2 7→ C{R}]

Case 2:
[l1 7→ C1{E{l1}, C2{R1}}]

B⇒
[l1 7→ C1{E{•}, C2{R1}}]

T
↪→

l1 7→ C1{E{•}, C2{Q1}}]

[l1 7→ C1{E{l1}, C2{R1}}]
T
↪→

[l1 7→ C1{E{l1}, C2{Q1}}]
B⇒

[l1 7→ C1{E{•}, C2{Q1}}]

No other cases are possible for the same reason as for (TS).

• (ST) We are skipping some trivial cases.

9

UMM Working Papers

Case 1:
[l1 7→ E{R}, l2 7→ C{l1}]

T⇒
[l1 7→ E{Q}, l2 7→ C{l1}]

S
↪→

[l1 7→ E{Q}, l2 7→ C{E{Q}}]

[l1 7→ E{R}, l2 7→ C{l1}]
S
↪→

[l1 7→ E{R}, l2 7→ C{E{R}}] T⇒ T
↪→

[l1 7→ E{Q}, l2 7→ C{E{Q}}]

Case 2:

[l1 7→ E{λx.C1{x, . . . , x} @ C2{l2}}, l2 7→M] T⇒
[l1 7→ E{C1{C2{l2}, . . . , C2{l2}}}, l2 7→M]

S
↪→ . . .

S
↪→

[l1 7→ E{C1{C2{M}, . . . , C2{M}}}, l2 7→M]

[l1 7→ E{λx.C1{x, . . . , x} @ C2{l2}}, l2 7→M]
S
↪→

[l1 7→ E{λx.C1{x, . . . , x} @ C2{M}}, l2 7→M] T⇒
[l1 7→ E{C1{C2{M}, . . . , C2{M}}}, l2 7→M]

Case 3:
[l1 7→ C1{E1{R1}, C2{l2}}, l2 7→M] T⇒
[l1 7→ C1{E1{Q1}, C2{l2}}, l2 7→M] S→
[l1 7→ C1{E1{Q1}, C2{M}}, l2 7→M]

[l1 7→ C1{E1{R1}, C2{l2}}, l2 7→M]
S
↪→

[l1 7→ C1{E1{R1}, C2{M}}, l2 7→M] T⇒
[l1 7→ C1{E1{Q1}, C2{M}}, l2 7→M]

Case 4:

[l1 7→ C1{E1{R1}, C2{l1}}]
T⇒

[l1 7→ C1{E1{Q1}, C2{l1}}]
S→

[l1 7→ C1{E1{Q1}, C2{C1{E1{Q1}, C2{l1}}}}]
[l1 7→ C1{E1{R1}, C2{l1}}]

S
↪→

[l1 7→ C1{E1{R1}, C2{C1{E1{R1}, C2{l1}}}}]
T⇒ T→

[l1 7→ C1{E1{Q1}, C2{C1{E1{Q1}, C2{l1}}}}]

10

Call-by-name Calculus of Records

Case 5: The label is nested within the evaluation redex

[l1 7→ E{λx.C1{l1, x, . . . , x} @ M}] T⇒
[l1 7→ E{C1{l1,M, . . . ,M}}] S

↪→
[l1 7→ E{C1{E{C1{l1,M, . . . ,M}},M, . . . ,M}}]

[l1 7→ E{λx.C1{l1, x, . . . , x} @ M}] S
↪→

[l1 7→ E{λx.C1{E{λx.C1{l1, x, . . . , x} @ M}, x, . . . , x} @ M}] T⇒ T→
[l1 7→ E{C1{E{C1{l1,M, . . . ,M}},M, . . . ,M}}

Case 6: The label is nested within the evaluation redex.

[l1 7→ E{λx.C1{x, . . . , x} @ C2{l1}}]
T⇒

[l1 7→ E{C1{C2{l1}, . . . , C2{l1}}}]

[l1 7→ E{λx.C1{x, . . . , x} @ C2{l1}}]
S
↪→

[l1 7→ E{λx.C1{x, . . . , x} @ C2{E{λx.C1{x, . . . , x} @ C2{l1}}}}]

Before we continue the proof for this case, we introduce a multi-substitution
transformation which we abbreviate MS. This sequence of forward and
backward term and substitution steps on a single component allows us to
substitute the value of the entire component into several labels at once.

Definition 4.4. Let C{l, . . . , l} be a multi-hole context with all holes filled
by a term l. D1 = [l 7→ C{l, . . . , l}, . . .] MS→ [l 7→ C{C{l, . . . , l}, . . . , C{l, . . . , l}}, . . .] =
D2 is called a multi-substitution step. Note that C does not have to con-
tain all occurrences of l in the component, there may be other occurrences
not captured by C.

Lemma 4.5. MS→ can be represented as a sequence of forward and back-
ward term and substitution steps on the component.

Proof.

[l 7→ C{l, . . . , l}, . . .] T⇐
[l 7→ (λx.C{x, . . . , x}) @ l, . . .]

S
↪→

[l 7→ (λx.C{x, . . . , x}) @ ((λx.C{x, . . . , x}) @ l), . . .]
T
↪→

[l 7→ (λx.C{x, . . . , x}) @ C{l, . . . , l}, . . .] T⇒
[l 7→ C{C{l, . . . , l}, . . . C{l, . . . , l}}, . . .]

In the first step the name x is chosen in such a way that no free variables
of the term are captured.

Intuitively, the multi-substitution replaces multiple copies of a self-reference
in a record component by a single reference. It is hard (if not impossible)

11

UMM Working Papers

to keep multiple copies of a self-referring labels “synchronized” if they are
replaced one-by-one. However, reducing them to a single copy by a back-
ward term reduction step and them substituting allows us to keep all of
these labels “in synch”. Example 4.6 with a single copy of a self-reference
served as a motivation for the multi-substitution step.

Now we continue case 6 using the multi-substitution:

[l1 7→ E{λx.C1{x, . . . , x} @ C2{l1}}]
T⇒

[l1 7→ E{C1{C2{l1}, . . . , C2{l1}}}]
MS→

[l1 7→ E{C1{C2{E{C1{C2{l1}, . . . , C2{l1}}}}, . . . , C2{E{C1{C2{l1}, . . . , C2{l1}}}}}}]

[l1 7→ E{λx.C1{x, . . . , x} @ C2{l1}}]
S
↪→

[l1 7→ E{λx.C1{x, . . . , x} @ C2{E{λx.C1{x, . . . , x} @ C2{l1}}}}]
T
↪→

[l1 7→ E{λx.C1{x, . . . , x} @ C2{E{C1{C2{l1}, . . . , C2{l1}}}}}]
T⇒

[l1 7→ E{C1{C2{E{C1{C2{l1}, . . . , C2{l1}}}}, . . . , C2{E{C1{C2{l1}, . . . , C2{l1}}}}}}]

Case 7: The cases of interactions between a term black hole reduction
and a substitution step (omitting the case when the two steps appear in
unrelated components) are listed below. The diagrams can be trivially
completed.

[l1 7→ C1{E{•}, C2{l1}}]
[l1 7→ E{•}, l2 7→ C{l1}]

• (SS) There are many different mutual positions of the two labels in this
case. We list all of them and show proofs for the non-trivial ones. Recall
that a label depending on itself in an evaluation context is a black hole
reduction, not a substitution.

Unfortunately, when two labels depend on each other, one in an evaluation
context, and the other in a non-evaluation one (i.e. the record is [l1 7→
E{l2}, l2 7→ C{l1}]) the system does not have a non-trivial completion
of the diagram. The only way to complete the diagram is to reverse
the original reductions. Therefore, the system effectively fails the desired
property.

Cases include:

[l1 7→ E{l2}, l2 7→M1, l3 7→ C{l4}, l4 7→M2] Trivial
[l1 7→ E{l3}, l2 7→ C{l3}, l3 7→M] Trivial
[l1 7→ E{l2}, l2 7→ C{l3}, l3 7→M] Case 1 below
[l1 7→ E{l3}, l2 7→ C{l1}, l3 7→M] Case 2 below
[l1 7→ E{l3}, l2 7→ C{l2}, l3 7→M] Trivial
[l1 7→ E{l2}, l2 7→ C{l1}] Case 3 below - no non-trivial completion
[l1 7→ E{l2}, l2 7→ C{l2}] Case 4 below
[l1 7→ C1{E{l2}, C2{l3}}, l2 7→M1, l3 7→M2] Trivial
[l1 7→ C1{E{l2}, C2{l2}}, l2 7→M] Case 5 below
[l1 7→ C1{E{l2}, C2{l1}}, l2 7→M] Case 6 below

12

Call-by-name Calculus of Records

There are no cases when l1 depends on itself in an evaluation context
(such as [l1 7→ C1{E{l1}, C2{l1}})] since these cases are black hole cases,
not substitutions.

Case 1:
[l1 7→ E{l2}, l2 7→ C{l3}, l3 7→M] S⇒
[l1 7→ E{C{l3}}, l2 7→ C{l3}, l3 7→M]

S
↪→ S

↪→
[l1 7→ E{C{M}}, l2 7→ C{M}, l3 7→M]

[l1 7→ E{l2}, l2 7→ C{l3}, l3 7→M]
S
↪→

[l1 7→ E{l2}, l2 7→ C{M}, l3 7→M] S⇒
[l1 7→ E{C{M}}, l2 7→ C{M}, l3 7→M]

Case 2:
[l1 7→ E{l3}, l2 7→ C{l1}, l3 7→M] S⇒
[l1 7→ E{M}, l2 7→ C{l1}, l3 7→M]

S
↪→

[l1 7→ E{M}, l2 7→ C{E{M}}, l3 7→M]

[l1 7→ E{l3}, l2 7→ C{l1}, l3 7→M]
S
↪→

[l1 7→ E{l3}, l2 7→ C{E{l3}}, l3 7→M] S⇒ S
↪→

[l1 7→ E{M}, l2 7→ C{E{M}}, l3 7→M]

Case 3:
[l1 7→ E{l2}, l2 7→ C{l1}]

S⇒
[l1 7→ E{C{l1}}, l2 7→ C{l1}]

S⇐
[l1 7→ E{l2}, l2 7→ C{l1}]

S←↩
[l1 7→ E{l2}, l2 7→ C{E{l2}}]

[l1 7→ E{l2}, l2 7→ C{l1}]
S
↪→

[l1 7→ E{l2}, l2 7→ C{E{l2}}]
S⇐

[l1 7→ E{l2}, l2 7→ C{l1}]

Unfortunately, in general this is a trivial completion of the diagram (see
example 4.7 for the case that proves it). While it formally satisfies the
elementary lift/project property, it does not allow us to make progress on
the inductive proof.

13

UMM Working Papers

Case 4:
[l1 7→ E{l2}, l2 7→ C{l2}]

S⇒
[l1 7→ E{C{l2}}, l2 7→ C{l2}]

S
↪→

[l1 7→ E{C{C{l2}}}, l2 7→ C{l2}
S
↪→

[l1 7→ E{C{C{l2}}}, l2 7→ C{C{l2}}

[l1 7→ E{l2}, l2 7→ C{l2}]
S
↪→

[l1 7→ E{l2}, l2 7→ C{C{l2}}]
S⇒

[l1 7→ E{C{C{l2}}}, l2 7→ C{C{l2}}

Case 5:
[l1 7→ C1{E{l2}, C2{l2}}, l2 7→M] S⇒
[l1 7→ C1{E{M}, C2{l2}}, l2 7→M] S→
[l1 7→ C1{E{M}, C2{M}}, l2 7→M]

[l1 7→ C1{E{l2}, C2{l2}}, l2 7→M]
S
↪→

[l1 7→ C1{E{l2}, C2{M}}, l2 7→M] S⇒
[l1 7→ C1{E{M}, C2{M}}, l2 7→M]

Case 6:

[l1 7→ C1{E{l2}, C2{l1}}, l2 7→M] S⇒
[l1 7→ C1{E{M}, C2{l1}}, l2 7→M]

S
↪→

[l1 7→ C1{E{M}, C2{C1{E{M}, C2{l1}}}}, l2 7→M]

[l1 7→ C1{E{l2}, C2{l1}}, l2 7→M]
S
↪→

[l1 7→ C1{E{l2}, C2{C1{E{l2}, C2{l1}}}}, l2 7→M] S⇒ S→
[l1 7→ C1{E{M}, C2{C1{E{M}, C2{l1}}}}, l2 7→M]

• (SB)

Case1:

[l1 7→ E{l1}, l2 7→ C{l1}]
B⇒

[l1 7→ E{•}, l2 7→ C{l1}]
S
↪→

[l1 7→ E{•}, l2 7→ C{E{•}}]

[l1 7→ E{l1}, l2 7→ C{l1}]
S
↪→

[l1 7→ E{l1}, l2 7→ C{E{l1}}]
B⇒

[l1 7→ E{•}, l2 7→ C{E{l1}}]
S⇒

[l1 7→ E{•}, l2 7→ C{E{E{•}}}] T⇒
[l1 7→ E{•}, l2 7→ C{E{•}}]

14

Call-by-name Calculus of Records

Case 2:

[l1 7→ C{E{l1}, C2{l1}}]
B⇒

[l1 7→ C{E{•}, C2{l1}}]
T⇒

[l1 7→ •]

[l1 7→ C{E{l1}, C2{l1}}]
S
↪→

[l1 7→ C{E{l1}, C2{C{E{l1}, C2{l1}}}}]
B⇒

[l1 7→ C{E{•}, C2{C{E{l1}, C2{l1}}}}]
T⇒

[l1 7→ •]
Here • appears in an evaluation context, and therefore the whole compo-
nent becomes a black hole.

Example 4.6. Example of the ST case from the above proof. There is only one
copy of l1 in the term bound to l1. This makes it easier to “synchronize” the
term after the two different reductions.

[l1 7→ (λx.λy.l1) @ 2] T⇒
[l1 7→ λy.l1]

S
↪→

[l1 7→ λy.λy.l1]

[l1 7→ (λx.λy.l1) @ 2]
S
↪→

[l1 7→ (λx.λy.(λx.λy.l1) @ 2) @ 2] T⇒
[l1 7→ λy.((λx.λy.l1) @ 2)]

T
↪→

[l1 7→ λy.λy.l1]

Example 4.7 (Mutually Recursive Substitutions Fail Lift/Project). The fol-
lowing example illustrates that there is no non-trivial completion of the el-
ementary lift/project diagram for two mutually recursive components, where
one step is an evaluation step, and the other one is a non-evaluation step
[l1 7→ E{l2}, l2 7→ C{l1}]:

[l1 7→ l2 + 1, l2 7→ λx.l1
S⇒

[l1 7→ (λx.l1) + 1, l2 7→ λx.l1

[l1 7→ l2 + 1, l2 7→ λx.l1
S
↪→

[l1 7→ l2 + 1, l2 7→ λx.l2 + 1

Since in the result of the evaluation step both components reference l1 and in
the result of a non-evaluation step both components reference l2, no substitu-
tion can bring the two records together. Therefore it is unlikely that there is
a non-trivial1 completion of the elementary lift/project diagram, and a trivial

1i.e. the one that does not reverse both steps

15

UMM Working Papers

completion cannot be incorporated into an inductive proof since no progress on
evaluation has been made.

Note that the example is different from the case of two evaluation substitu-
tion steps [l1 7→ E{l2}, l2 7→ E{l1}] where both components become black holes.
It is also different from the non-confluence example in section 2.2 since in that
example both steps are non-evaluation steps which does not affect the proof of
the elementary lift/project property.

5 Conclusions

It turns out that in the call-by-name calculus of records the non-confluence
extends to the case when one reduction is an evaluation step, and the other
one is a non-evaluation step. This prevents us from using even the extended
lift/project proof method (as described in [6]) for proving meaning-preservation
of reduction-based transformation in this calculus. Note that failure to apply a
specific proof method does not imply that reduction-based transformations are
not meaning preserving. In fact, there is a reason to believe that the transfor-
mations may be meaning-preserving up to information contents, as in [1].

16

Call-by-name Calculus of Records

Bibliography

[1] Z. M. Ariola, Stefan Blom. Skew confluence and the lambda calculus with
letrec. Annals of pure and applied logic 117/1-3, 97-170, 2002.

[2] Z. M. Ariola and J.W. Klop. Cyclic Lambda Graph Rewriting. In Proc. of
the Eight IEEE Symposium on Logic in Computer Science, Paris, July 1994.

[3] Z. M. Ariola and J. W. Klop. Equational Term Graph Rewriting. Funda-
mentae Informaticae, Vol. 26, Nrs. 3,4, June 1996. p. 207-240.

[4] H. P. Barendregt: The Lambda Calculus, its Syntax and semantics. Studies
in Logic, volume 103, Elsevier Science Publishers, 1984.

[5] E. Machkasova: Ph.D dissertation Computational Soundness of Non-
Confluent Calculi with Applications to Modules and Linking, April 2002,
Boston University

[6] J. B. Wells, Detlef Plump, and Fairouz Kamareddine: Diagrams for meaning
preservation. In Rewriting Techniques & Applications, 14th Int’l Conf., RTA
2003, volume 2706 of LNCS, pp. 88-106. Springer-Verlag, 2003

17

UMM Working Papers

Working Paper Series

Volume 1
Ritual and Ceremony In a Contemporary Anishinabe Tribe, Julie Pelletier
The War for Oil or the American Dilemma of Hegemonic Nostalgia?, Cyrus Bina
The Virgin and the Grasshoppers: Persistence and Piety in German-Catholic America, Stephen Gross
Limit Orders and the Intraday Behavior of Market Liquidity: Evidence From the Toronto Stock
Exchange, Minh Vo

Volume 2
Specialization of Java Generic Types, Elena Machkasova
A Call-by-name Calculus of Records and its Basic Properties, Elena Machkasova

	Call-by-name Calculus of Records and its Basic Properties
	Recommended Citation

	Machkasova_Calculus.pdf
	TechReport_Machkasova.pdf
	machkasova_christiansen_calculus3.pdf

	machkasova_christiansen_calculus3.pdf

