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Figure 8.1. U15(Z{2,3,5,7}) ⊂ U15(R) and U213(Z{2,3,5}) ⊂ U213(R).

the u-v plane. Our current coordinates are related to the quantities of Section 4 by
u = u0/u1 and v = u∞/u1.

8.4. A Katz cover. The last half of [15] considers two Katz covers with bad
reduction set W = {2, 3}. The smaller of the two is captured by the explicit
polynomial

f27(u, v, x) =(
x3 − 3dx+ 2ed

) (
x6 − 15dx4 + 40edx3 − 45d2x2 + 24ed2x− 32e2d2 + 27d3

)4
−432vd

(
x4 − 6dx2 + 8edx− 3d2

)6
,

with abbreviations d = u2+v2−2uv−2u−2v+1 and e = u+v−1. The polynomial
discriminant factors,

D27(u, v) = 28403270u102v126d234.

The Galois group of f27(u, v, x) ∈ Z[u, v][x] is the orthogonal group O−6 (F2) ⊂ S27 of

order 51, 840 = 27 34 5. The specialization set U213(Z{2,3}) has order 60+169 = 229
from Table 5.2. This specialization process produces 193 number fields with Galois
group O−6 (F2), 15 with Galois group the index two simple group O−6 (F2)+, and
other number fields with various smaller Galois groups [15].

Covers in the Katz hierarchy typically yield Lie-type Galois groups, like in this
example, with bad reduction set W containing at least two primes. By varying the
Katz cover, a single fixed specialization point u ∈ Uν(ZW ) with |W | ≥ 2 can be
expected to yield infinitely many different fields ramified within W .

8.5. A Hurwitz cover. Many Hurwitz covers of U213 with bad reduction set W =
{2, 3, 5} are studied in [14]. One such cover has degree 36 and can be given via
equations as follows. The cover X can be given coordinates x and y so that the
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map to U213 takes the form

u = −
32
(
x2 − 2y

)5
27y(x− y)4 (8x3 − x2 − 18xy + 27y2 + 2y)

,

v = −
(
4x3 − x2 + 18xy + 27y2 − 4y

)2 (
2x4 − 5x2y + 6xy2 − y3 + 2y2

)
27y(x− y)4 (8x3 − x2 − 18xy + 27y2 + 2y)

.

Eliminating y gives f36(u, v, x) ∈ Z[u, v][x] with x-degree 36 and 1125 terms. Its
discriminant is

D36(u, v) = −233735135750u53v13d22C(u, v)2,

with the complicated polynomial C(u, v) ∈ Z[u, v] not contributing to field discrim-
inants of specializations. The specialization set U213(Z{2,3,5}), drawn as the right
half of Figure 8.1, has order 1927 + 1020 = 2947 from Table 4.1. The specializa-
tion process produces 2652 number fields with Galois group S36, 42 number fields
with Galois group A36, and others with various smaller Galois groups, all with bad
reduction set exactly {2, 3, 5}.

Covers in the Hurwitz hierarchy typically yield alternating or symmetric groups,
like in this example, with bad reduction set W containing all primes dividing the
order of some nonabelian finite simple group, thus at least three primes. Here again,
by varying the cover, a single fixed specialization point u ∈ Uν(ZW ) can give many
different fields ramified within W .

8.6. Constraining wild ramification. Let Ku be an algebra obtained by spe-
cializing a cover with bad reduction set W at a point u with bad reduction set P .
Then the typical behavior of p-adic ramification in Ku is as follows:

p ∈ P p 6∈ P
p ∈W very wild slightly wild
p 6∈W tame none

To illustrate the distinction between “very wild” and “slightly wild”, we specialize
the Katz cover f27(u, v, x) and the Hurwitz cover f36(u, v, x) at the 15-element set
U213(Z{2}) appearing as black vertices in Figure 2.1:

u0 u1 u∞ d27(u, v) d36(u, v)
8 1 1 288332 298336 •286334 −2127339530 −2127343530 −2118339530

−4 1 1 280336 284336 280336 2114339530 2112339530 •−2100325528

2 1 1 288336 288330 282330 −2115339530 −2121339530 −2118339530

−2 −1 1 298336 2102334 296332 −2137327530 2137339530 2134339530

2 −1 1 298336 2102336 296336 2137335530 −2137327530 2134339530

On a given row starting with (u0, u1, u∞), the (u, v) in the second and third blocks
are, in order, (u0, u∞)/u1, (u1, u0)/u∞, and (u∞, u1)/u0.

Field discriminants of the specializations are as indicated by the table. As (u, v)
runs over all of U213(Z{2,3}) one gets discriminants d27(u, v) = 2a3b with a ∈
[24, 102] and b ∈ [26, 60]. Restricting to U213(Z{2}), the maximum a appearing is
not reduced at all, while the maximum b is reduced from 60 to 36. Similarly, as
(u, v) runs over all of U213(Z{2,3,5}), one gets discriminants d36(u, v) = ±2a3b5c

with a ∈ [40, 137], b ∈ [7, 72], and c ∈ [18, 61]. Restricting to U213(Z{2}), amax is
not reduced at all, while bmax is reduced from 72 to 39 and cmax is reduced from 61
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to 30. This distinction between “very wild” and “slightly wild” makes all the sets
Polysκ(P ) of interest in the applications, not just the ones where P is large enough
to contain the bad reduction set W of a cover.

8.7. Explicit examples. To give completely explicit examples of number fields
constructed using the specialization points, we continue the previous subsection.
The fifteen specializations of f27(u, v, x) in the table all have Galois group O−6 (F2)
except the bulleted one, which has Galois group the simple index two subgroup. A
presentation for this field K27,1/8,1/8 is Q[x]/g27(x) with

g27(x) = x27 − 9x26 + 21x25 + 53x24 − 288x23 + 1628x21 − 1164x20 − 5409x19

+5681x18 + 12159x17 − 14793x16 − 20548x15 + 25764x14 + 30324x13

−36220x12 − 42249x11 + 48465x10 + 50819x9 − 61773x8 − 44220x7

+64172x6 + 23712x5 − 48024x4 − 5725x3 + 22509x2 + 147x− 5045.

Similarly, the fifteen specializations of f36(u, v, x) in the table all have Galois group
S36 except the bulleted one, for which the Galois group is intransitive. A presenta-
tion for this algebra K36,−1/4,−1/4 is Q[x]/(g10(x)g13(x2)) with

g10(x) = x10 − 4x9 + 2x8 + 8x7 − 8x6 + 8x5 − 20x4 − 10x2 + 80x− 60,

g13(x) = x13 − 44x12 + 728x11 − 5256x10 + 15240x9 − 5320x8 − 41620x7

+72280x6 − 33940x5 − 4320x4 − 8760x3 + 20480x2 − 6140x+ 480.

The field Q[x]/g10(x) has Galois group S10 and discriminant 2253655 while for
Q[x]/g13(x) these invariants are S13 and 23339511. Despite the small exponents,
these fields are wildly ramified not only at 2, but also at 3 and 5.

8.8. Larger degrees. In larger degrees, the numerics of the sets Uν(ZP ) are re-
flected more clearly in the number fields constructed. For example, in a degree
202 example of [14], the specializations at u ∈ U213(Z{2,3,5}) produce 2947 dis-
tinct fields, all full in the sense of having Galois group all of A202 or S202, all
wildly ramified at 2, 3, and 5, and unramified elsewhere. We similarly expect
U213(Z{2,3,5}) to be likewise responsible for exactly 2947 distinct full fields in many
degrees m > 202. It seems possible that the Hurwitz construction accounts for all
full fields in NFm({2, 3, 5}) for most of these degrees m.

As another example which gives a numerical sense of the asymptotics of this
situation, consider the specialization set U32768,13(Z{2,3,5}) = Polys[32768]({2, 3, 5}),
chosen because it contains s8,1 from Figure 7.1. From the generating function
(7.3), this specialization set contains more than 7.46 × 1043 elements. One of
the smallest degree covers of U32678,13 , in the language of [14, 16], comes from
the Hurwitz parameter (S5, (213, 32, 221, 5), (32768, 1, 1, 1)). This cover has degree
exactly (1032768 · 20 · 15 · 24)/(60 · 120) = 1032768. As u ranges over the large
set U32768,13(Z{2,3,5}) the specialized algebras Ku are all ramified within {2, 3, 5}.
Other Hurwitz parameters give this same degree and we expect that there are many
full fields in NF1032768({2, 3, 5}). The point for this paper is that polynomials with
bad reduction within {2, 3, 5} are an ingredient in the construction of these Ku. By
way of contrast, it seems possible that NF1032678+1({2, 3, 5}) is empty.
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9. Future directions

9.1. Specialization sets Uν [ZP ] for general ν. Let ν = (ν1, . . . , νr) be a se-
quence of positive integers. For F a field, let Confν(F ) be the set of tuples of
disjoint divisors (D1, . . . , Dr) on the projective line over F , with Di consisting of
νi distinct geometric points. The group PGL2(F ) acts on Confν(F ) by fractional
linear transformations. The object Confν itself is a scheme which is smooth and of
relative dimension

∑
νi over Spec(Z).

There is a natural quotient scheme Uν = Confν/PGL2. The map εν : Confν →
Uν induces a bijection Confν(F )/PGL2(F )→ Uν(F ) whenever F is an algebraically
closed field. In the case that νr−2 = νr−1 = νr = 1, the action of PGL2(F ) on
Confν(F ) is free for all fields F , and the maps Confν(F )/PGL2(F ) → Uν(F )
are always bijective. The general case is more complicated because there may be
points in Confν(F ) for which the stablizer in PGL2(F ) is nontrivial. The proofs of
Theorems 4.1 and 5.1 involved the maps εν for ν = 212 and ν = 31 without using
this notation. Via the coordinates w and j respectively, one has U212(F ) = F× and
U31(F ) = F for F of characteristic > 2 and > 3 respectively. The complications
with fixed points are above w = 1 and j = 0, 1.

For P a finite set of primes, let Uν [ZP ] be the image of Confν(ZP ) in Uν(Q).
The set Uν [ZP ] may be strictly smaller than the set Uν(ZP ) of scheme-theoretical
P -integral points, as illustrated by the equalities U212 [ZP ] = T∞,2,∞(ZP ) ∪ {1}
and U31[ZP ] = T3,2,∞(ZP )∪ {0, 1}, which hold respectively under the assumptions
{2} ⊆ P and {2, 3} ⊆ P .

In this paper, we have focused on tabulating Polysκ(P ) to keep sets small and
have a clear graph-theoretic interpretation. However from the point of view of
Section 8, our actual problem has been the identification of Uν(ZP ) whenever
νr−2 = νr−1 = νr = 1. The natural generalization is to identify Uν [ZP ] for general
(ν, P ). The Katz and Hurwitz theories of the previous section naturally give covers
of general Uν for general ν.

The general problem of identifying Uν [ZP ] has the same character as the spe-
cial case that we treat, but is technically more complicated because elements of
Confν(ZP ) can no longer be canonically normalized by applying a fractional linear
transformation. In the extreme case ν = (n) the complications become quite severe:
describing the scheme Un is a goal of classical invariant theory, and explicit results
become rapidly more complicated as n increases.

The group Sn acts naturally on the scheme U1n . Despite the normalization of
three points to 0, 1, and∞ in previous sections, the influence of this automorphism
group has been visible. For example, the natural automorphism group of the left
half of Figure 8.1 is S5, and it acts transitively on the twelve components of U15(R).
An alternative viewpoint on Uν for general ν = (ν1, . . . , νr) is via the equation

(9.1) Uν = U1n/(Sν1 × · · · × Sνr ).

For example, the left half of Figure 8.1 covers the right half via U15 → U213 ,
(s, t) 7→ (u, v) = (s+ t, (1− s)(1− t)). The map is not surjective even on R-points
or Qp-points. The map is very far from far from surjective on the ZP -points of
interest to us, and so the new Uν present genuinely new arithmetic sets Uν [ZP ]
to be identified, despite the tight relation (9.1). Birch and Merriman [2] proved,
as part of a considerably larger theory, that the sets Uν [ZP ] are all finite. Their
finiteness theorem was made effective by Evertse and Győry [8].
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9.2. Descriptions of Uν [ZP ]. The most straightforward continuation of this pa-
per would be to completely identify more Uν [ZP ]. Staying first in the context
νr−2 = νr−1 = νr = 1, the direction needing most attention is general completeness
results for the excellent P -units introduced in Section 6. Magma [3] already has the
efficient command ExceptionalUnits giving complete lists of exceptional units.
An extension of its functionality to P -units would immediately move many Uν(ZP )
currently in the second regime of expected completeness into the first regime of
proved completeness. Leaving the context of νr−2 = νr−1 = νr = 1, there are many
more (ν, P ) for which complete identification of Uν [ZP ] is within reach, as it is only
required that the normalization problem be resolved in some different way.

In the third regime of the introduction, where complete tabulation is impossible,
there are still many questions to pursue. One would first like heuristic estimates
on |Uν [ZP ]|; the study of exceptional units in [11] looks to be a useful guide. The
“vertical” direction of P fixed and ν varying is interesting from the point of view
of constructing number fields with larger degree and bounded ramification. In this
direction it seems that close attention to constructional techniques like those of
Section 7 may yield good lower bounds. In the “horizontal” direction of ν fixed
and P increasing, the Reduction Bound 2.1 becomes particularly important and
upper bounds on |Uν [ZP ]| may be available. Finally, the Uν [ZP ] are not just bare
sets to be tabulated or counted, one should also pay attention to their natural
structures. Figure 8.1 suggests that in the horizontal direction the asymptotic
distribution of Uν [ZP ] in Uν(R) may be governed by interesting densities. The
asymptotic distribution of Uν [ZP ] in Uν(Qp) is important for understanding the
p-adic ramification of number fields constructed via covers, and may likewise be
governed by densities.
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