Health & Wellness on the Voyages of James Cook

Dave Smith

University of Minnesota - Morris, smit7787@morris.umn.edu

Follow this and additional works at: https://digitalcommons.morris.umn.edu/honors

Part of the History of Science, Technology, and Medicine Commons

Recommended Citation

https://digitalcommons.morris.umn.edu/honors/10
Health & Wellness on the Voyages of James Cook

Introduction

For roughly 400 years after Magellan’s first circumnavigation of the Earth in 1519, the imperialist nations of western Europe fought tooth and nail to establish supremacy in the vast untouched Pacific Ocean. As one might imagine, such an undertaking did not occur without a mix of international conflict, cultural repression, and general loss of life. The source of a great many of these lost lives may, however, be less expected. As it happens, scurvy and other diseases made these multi-year voyages frequently lethal for the people that crewed them. In 1740, for example, Captain George Anson began a voyage to the Pacific in an attempt to explore and further the expanse of the British Empire. In 1742, Anson returned to Britain with only 20% of his crew intact. This was not an uncommon result for a circumnavigational trek. By standards of the period, Anson’s was actually a successful voyage. He had captured a treasure galleon and procured a large quantity of silver and gold for the Crown (Cuppage 1995). The cost in human life, however, was certainly not negligible.

Fortunately, a series of advances in maritime health in the middle of the 18th century served to curb the vast majority of these deaths. Capt. James Cook was a chief driving factor in these advances. Under Cook’s guidance, the *Resolution* returned to Britain on July 26, 1775 after a three-year voyage having lost only four of its original 100+ crew members. Two of these deaths were drownings and another was a fall. Only one death was due to illness (Cook 1776).
Clearly, this was a far cry from Anson’s previous voyage. It may be easy to suppose that a key invention or discovery was made to produce such a marked improvement, but this was not the case. In actuality, these multi-year treks were fraught with such an expansive array of health risks and dangers that the idea of a panacea for ocean-going disease was as unfounded as that of a single tool to fit all of a carpenter’s needs. The relevant circumstances were simply far too broad to consider such a measure possible. While at sea, diet and sanitation presented an intricate challenge. When docked, infections and disease brought about by interacting with foreign lands and peoples merited consideration. Beyond the wide variety of potential (in some cases inevitable) ailments, the science used to treat them was not altogether functional. This was the age of humoral medicine, where illnesses were believed to be caused by imbalances between the four humors. Accordingly, prescribed treatments frequently lacked efficacy and amputations were quite common (Cuppage 1995).

Despite these challenges, James Cook effectively maintained the health of his crew to a standard that would be enviable for the next ~150 years. It was stated above that this success was not due to a single factor, but this may not be totally accurate. In fact, the exemplary health of Cook’s crews can largely be attributed to the meticulousness and dedication with which Cook approached the wellbeing of his men. In this paper, I will discuss how Cook’s approach to scurvy prevention and treatment, awareness of infectious disease, and strict perpetuation of sanitation affected the health of his crews.

Scurvy

Until the early 16th century, oceanic voyages were generally quite short. Columbus’s trek from Spain to the Caribbean, for example, took a little over two months. A new set of problems arise when that two months was extended to over three years. Chief among these difficulties was
scurvy. As we now understand, scurvy results from a lack of vitamin C in one’s diet. After 8-12 weeks of insufficient vitamin C intake, symptoms may begin to arise. Early symptoms are relatively non-specific, and include irritability, fever, and loss of appetite. In a modern context, these symptoms provide little information about the illness, though they may have been quite telling on a 18th century ship. Further progression of the disease can cause bruising and diseased gums. If left untreated, limb pain, poor wound healing, and even death can occur (Agarwal 2015). These symptoms arise primarily because of vitamin C’s role in collagen production. Vitamin C is a key factor in the formation of hydroxyproline, which is itself a key factor in collagen synthesis. Thus, no vitamin C means inhibited collagen synthesis. As collagen is important in maintaining the integrity of connective tissue around blood vessels and proper wound healing, lack of collagen (secondary to lack of vitamin C) is the primary causative agent behind the bleeding gums, bruising, and poor wound healing observed in advanced scurvy cases. Vitamin C is also important in the formation of bone matrix and the intestinal absorption of iron. Through these mechanisms, scurvy can also cause limb pain and anemia (Popovich et al 2008). Of course, diagnostic and explanatory information with this degree of accuracy was not available in the mid-18th century. Without the proper knowledge on diet and prevention, scurvy wreaked havoc on early circumnavigational journeys.

Although scholarship on the matter was sparse until the mid-18th century, a few years before Cook’s initial voyage, some crews had been known to use proper prophylactic and curative measures a number of years prior. In one known example, the 1598 Dutch East Indies Fleet brought large quantities of lemon juice on its voyage and lost only 15 men. On the same fleet’s previous voyage, they neglected to bring lemon juice and lost over 100 lives. This was a suitable example of a vessel properly using an antiscorbutic (scurvy-countering) medication over
150 years before Cook’s initial voyage. Some may read this as an infringement on the
significance of Cook’s antiscorbutic treatments, but this was not the case. While some crews
were able to properly prevent and treat scurvy, little formal scholarship on the matter had been
accomplished. To further complicate matters, members of the Royal Navy were frequently at
odds with the College of Physicians (the regulating body for British medicine) on how best to
prevent and treat scurvy. Many sailors had the inkling that citrus fruit would act as a worthy
treatment, but doctors of the College frequently recommended other less effective medicines,
such as an elixir of sulphuric acid, alcohol, sugar, and spices. This prevented a consensus on
scurvy treatment from being formed, and by extension prevented widespread use of effective
antiscorbutic medicine (Baron 2009).

Beyond this battle of information versus misinformation, practicality and logistics also
produced issues in scurvy prevention and treatment. While it did eventually become well-known
that oranges and lemons could effectively cure and prevent scurvy, it often did not work to bring
these fruits on a long-distance voyage. As fresh fruit took up a fair amount of space, carrying
enough fruit to keep an entire crew scurvy-free was often not feasible. Even if the space issue
could be ignored, crews still would not have carried such an enormous quantity of fruit because
(and herein lies the second issue) fresh fruit tended to spoil eventually (Baron 2009).

A prominent step toward addressing these issues was taken with James Lind’s 1753
Treatise on Scurvy. Lind’s *Treatise* tells of a controlled clinical trial on scurvy prevention during
a voyage Lind took part in in 1747. Roughly eight weeks into this journey, 12 sailors took ill
with similar cases of scurvy. Lind used this opportunity to place each of these sailors on similar
diets, sort them into groups of two, and give each group a different proposed antiscorbutic
medication. Medicines given included cider, elixir of vitriol (the treatment proposed by the
College of Physicians as described above), vinegar, sea-water, nutmeg, and oranges and lemons. These treatments were given over a two-week period before the results were analyzed.

In the midst of this two-week period, the two men given oranges and lemons were able to recover. None of the other treatments groups saw much progress. Through this test and the subsequent publishing of his *Treatise*, Lind was able to demonstrate to the scientific and naval communities that of the popular antiscorbutic treatments, citrus fruit were the most effective option. While this solved the debate of how to best treat scurvy, it did nothing to remedy the practical problems of using citrus fruit to treat scurvy on long voyages, these being the issues of storage and preservation. Lind himself proposed boiling lemon and orange juices down to a thick syrup or *rob*. While this *rob* could be easily stored and kept for several years without spoiling, the boiling process was ultimately shown to remove any antiscorbutic properties the juice once had (Baron 2009). So, while the naval and medical communities had learned more about scurvy prevention, they still had little on how to implement this knowledge. Enter James Cook.
Between 1768 and 1799, James Cook attempted three circumnavigational voyages, the routes of which are pictured in Fig. 1. Each of these lasted roughly three years. Throughout these three lengthy treks, no man under Capt. Cook’s care perished from scurvy (Kodicek 1969). While Cook certainly did not invent or discover proper scurvy care, he achieved rapturous success regarding the disease, and it is necessary to discuss how. On his initial 1768 voyage, Cook’s ship was outfitted with a series of potentially antiscorbutic foods and medicines, including wort, sauerkraut, saloup (a tea-like drink made from sassafras), lemon and orange rob, and what is identified as a “portable soup.” This “portable soup” is essentially a meat paste to be dissolved in oatmeal. Cook made use of most of these barring the rob. Interestingly, Cook had little faith in the antiscorbutic potency of the rob as he believed that a fruit or vegetable will retain more of its nutrients the closer it is to its natural state. In this case, he was correct.
Of the foods/medicines listed above, Cook appears to take the most stock in sauerkraut and wort. Cook made the following report to the Victualling Board following the completion of his initial voyage:

“I am to acquaint you that Sour Kroutt together with the many Antiscorbutics my Lords Comm of the Admiralty were pleased to order to be put on board did so effectually preserve the People from a Scorbutic Taint that no one dangerous case hapned in that disorder during the whole voyage…” (sic) (qtd in Kodicek 1968).

It is important to note the use of the word “dangerous” in the above quotation. Some cases of scurvy did occur, but none progressed to the point where it may have been considered “dangerous”. Specifically regarding sauerkraut, Cook wrote in a separate report to the Admiralty: “Sour Krout, of which we had also a large provision, is not only a wholesome vegetable food, but in my judgement, highly antiscorbutic, and spoils not by keeping” (Cook 1776). In the same report, Cook had the following to say on wort:

“This is without doubt one of the best antiscorbutic sea-medicines yet found out; and if given in time will, with proper attention to other things, I am persuaded, prevent the scurvy from making any great progress for a considerable time; but I am not altogether of the opinion, that it will cure it in an advanced state at sea” (Cook 1776).

This faith in wort provides an interesting discussion point as it is now known that wort does not have any antiscorbutic properties. More interestingly is that Cook seemed to eventually realize his error. The quote above was taken after Cook’s second voyage, towards the end of which he began brewing spruce beer. Unlike wort, the plant materials used in brewing spruce beer impart some degree of vitamin C. During his third voyage, Cook shifted away from brewing wort and
instead brewed spruce beer almost exclusively. While Cook has not formally written on this topic, it appears likely that he began to understand the greater antiscorbutic efficacy of spruce beer (Stubbs 2003).

While this switch to spruce beer illustrates Cook’s adaptability, it didn’t occur until the last stage of Cook’s career and by no means explains his prior success in dealing with scurvy. The fervor with which Cook sought after fresh fruits, vegetables, and water very well might explain this success, however. At every port of call, Cook was known to purchase fresh produce and refill his stock of fresh water. As an example of this fervor, Cook had been known to acquire fresh water from icebergs while navigating near the south pole (Cuppage 1995). As far as fruit and vegetables go, his affinity for onions was particularly noteworthy. From a 1771 report to the Admiralty: “Also at Madeira I purchased a quantity of Onions which was distributed to the ships Company and which I understand has been Practised by ships on the like voyages” (sic) (qtd. in Kodicek 1968). Onions are now known to harbor 30 mg of vitamin C per 100 g of edible onion, so their frequent use on Cook’s voyages were certainly justified. Besides onions, Cook was known to procure wild celery, appropriately-named scurvy grass, sweet potatoes, certain south Pacific leaves, cranberries, and bread fruit, all with significant but varying degrees of vitamin C. Table 1 provides the vitamin contents for a variety of common antiscorbutic foods. These vegetables were either eaten fresh or cooked in a soup (Kodicek 1968). While some of these vegetables were used on other voyages by Cook’s contemporaries, Cook’s enthusiastic approach to providing quality food to his crew may explain his success with scurvy. As evidence of this, we can use Cook’s second voyage.
After completion of his first voyage in 1771, Cook was quickly chosen to lead another voyage to the Pacific, this time to explore that ocean and search for what are now known as Australia and Antarctica. For this voyage, Cook was given command of two ships, the H.M.S. Resolution and the H.M.S. Adventure. Cook himself captained the Resolution while another naval officer, Tobias Furneaux, captained the Adventure (Tilghman 1981). The two ships had the same initial provisions and were both under Cook’s instruction regarding scurvy prevention. Despite this, Cook’s Resolution saw remarkably more success at halting scurvy. While the Resolution experienced infrequent cases of scurvy and experienced no deaths from the disease, Furneaux’s Adventure experienced more frequent scurvy cases and at least one confirmed death by the disease (a cook, ironically) despite the fact that the ship became separated from the

Table 1—Ascorbic Acid Content of Historic Antiscorbutics

<table>
<thead>
<tr>
<th>Antiscorbutics</th>
<th>Ascorbic Acid Content mg/100 g. material</th>
</tr>
</thead>
<tbody>
<tr>
<td>rose hips</td>
<td>70–1000</td>
</tr>
<tr>
<td>primrose</td>
<td>805</td>
</tr>
<tr>
<td>apple bog heather, tufted vetch, currents</td>
<td>300–500</td>
</tr>
<tr>
<td>conifer needles*, scurvy grass*, nettles, parsley</td>
<td>100–300</td>
</tr>
<tr>
<td>watercress*</td>
<td>6–83</td>
</tr>
<tr>
<td>goose grass, buckbean, brooklime, gooseleaves</td>
<td>30–80</td>
</tr>
<tr>
<td>orange and lemon juice</td>
<td>40–60</td>
</tr>
<tr>
<td>lime juice, breadfruit</td>
<td>20–30</td>
</tr>
<tr>
<td>onions*</td>
<td>5–30</td>
</tr>
<tr>
<td>sauerkraut*, wild celery, cranberries</td>
<td>5–10</td>
</tr>
<tr>
<td>malt*, cider, sugar, molasses, vinegar, bread,</td>
<td>0–trace</td>
</tr>
<tr>
<td>coffee, portable soups, wine, beer, dried peas</td>
<td></td>
</tr>
</tbody>
</table>

* used by James Cook

*Cuppage’s table does not identify breadfruit, celery, cranberries, portable soups, or beer as being used by Cook.

Other sources (Kodicek and Stubbs) identify the prenominated foods as having been used by Cook.
Resolution in thick fog near the south pole and returned to England many months before the Resolution (Cuppage 1995). This difference can likely be attributed to Capt. Furneaux’s documented less intense inclination to procure produce and introduce it to his crew’s meals (Kodicek 1968). While knowing that adding as many vegetables as are available to a crew’s diet effectively prevents and treats scurvy is certainly beneficial, execution of this knowledge is also paramount. It is apparent that Furneaux lacked this ability to execute, though Cook certainly did not. He described in his journal the psychological technique used:

“The Sour Krout the Men at first would not eate until I put in practice a method I never once knew to fail with seamen, and this was to have some of it dress’d every day for the Cabbin Table, and permitted all the Officers without exception to make use of it and left it to the option of the Men either to take as much as the pleased or none at all; but this practice was not continued above a week before I found it necessary to put every one on board to an Allowance… the Moment they see their Superiors set a Value upon it, it becomes the finest stuff in the World…” (sic) (qtd. in Kodicek 1968).

This is the secret behind Cook’s unparalleled success in dealing with scurvy. Not only was he adamant in acquiring antiscorbutic vegetables and fresh water, he was also effective and unyielding in ensuring their consumption by his crew.

Infectious Disease

The success of Cook’s antiscorbutic strategies cannot be overstated, but scurvy was only one hazard to health faced on these voyages. Cook’s travels brought him and his crews into contact with many foreign lands and people; it is not surprising that infectious disease was a frequent foe. This being the mid-late-18th century, it is also not surprising that Cook had greater
difficulty dealing with these diseases than with scurvy. A few examples of these encounters with infectious disease exist, but the most prominent occurred during Cook’s first voyage.

In October of 1770, the Endeavour dropped anchor at Batavia (as the Indonesian capital city of Jakarta was known at the time) for much-needed repairs. Batavia was known most prominently for being the Asian seat of the Dutch East India Company, and thus a major trading port. Unfortunately, conditions within the city proved to be an excellent breeding ground for mosquitoes, and mosquito-borne diseases such as malaria and dysentery were rampant. In fact, these diseases were so prominent that a reported 1,100,000 deaths occurred within the city between 1730 and 1752 (Rauschenberg 1968). It is difficult to reconcile such a shockingly high figure with the relative lack of information that comes with 18th century epidemiologic data (or lack thereof), but it appears plausible: At the time the Dutch East India Company established itself in Batavia in 1618, the city had a total population of roughly 120,000. After over 100 years of expansion, and taking the high quantity of European traders traveling through the city as well as a genocide of the Chinese inhabitants by the Dutch in 1740 into account, the aforementioned death toll appears more realistic (van der Brug 1997). Unsurprisingly, Batavia was nicknamed “Graveyard of the Europeans.”

This is the town Cook and his crew spent over two months in while the Endeavour was under repair. The crew went unaffected by disease for the better part of a month, though symptoms of malaria began to appear by the end of October. Noteworthy members of the crew who took ill include the two Polynesians on board, the naturalist Joseph Banks, Daniel Solander, a botanist, and William Monkhouse, a surgeon. As gleaned from Banks’ journal, treatments for malaria included the application of “sinapisms to his feet and blisters to the calves of his legs” (qtd in Rauschenberg 1968). Sinapisms and blisters are both forms of topical palliative care,
from which one can infer that little was available in the way of curative treatment. With few other interventions available, Cook thought it best to sequester his crew away from the town in attempt to avoid the more disease-ridden areas. Though many had fallen ill, most of the crew now began to recover. For some, however, recovery was not to be. The surgeon Monkhouse was one of the few who perished. After repairs were complete and enough of the crew were physically able to sail, the *Endeavour* departed from Batavia in late December. At the time of departure, seven had succumbed to malaria (Rauschenberg 1968).

Though Cook had left the mosquito-infested marshes of Batavia, they had not been able to completely leave the mosquitos behind. Their water stores had become infested and the *Endeavour* continued to be plagued by malaria and dysentery until their arrival in Capetown in March. As before, the only care available was palliative and without an effective treatment, the death toll grew. Cook finally docked in England in July 1771 having lost a total of 31 men to infectious disease (Rauschenberg 1968, Kodicek 1968).

Though this was by far Cook’s most prominent bout with infectious disease, it was not his last. While Cook was docked in Tahiti in 1777, his crew’s activities resulted in wave of venereal diseases so debilitating that Cook was forced to delay departure for the crew to recover. After the crew regained suitable health, Cook’s ships (The *Resolution* and the *Discovery* on this voyage, Cook’s third and final) departed for Hawai’i. As many of the crew still suffered from venereal diseases upon arrival in Hawai’i, Cook took steps to prevent further spread of disease (Igler 2004). From Cook’s journal:

“As there were some venereal complaints on board both the Ships, in order to prevent its being communicated to these people, I gave orders that no Women, on any account whatever were to be admitted on board the Ships, I also forbid all manner of connection
with them and ordered that none [of the sailors] who had the venereal upon them should go out of the ships” (qtd in Bushnell 1993).

Despite his best intentions, coupling still took place. Nevertheless, Cook did what he could to discourage further couplings. A sailor named Will Bradyley was punished with two dozen lashes “for disobeying orders and… and having connections with women knowing himself to be injured with the Veneral disorder” (sic) (qtd. in Bushnell 1993). Though Cook did his best to prevent the spread of disease, he was not able to totally prevent it. That he thought to forbid these “connections” in the first place impressed Polynesian epidemiology historian O. A. Bushnell: “All commanders of lecherous men in those years should have entertained these same fears and reached the same conclusions. Yet few commanders allowed themselves to be so concerned. Captain Cook, however, was no ordinary officer…” (Bushnell 1993).

Infectious disease in Cook’s context proved to be a mighty enemy. Despite his best efforts, these diseases were pervasive and debilitating in the best cases and lethal in the worst cases. That said, this was known to be the case for all voyages to foreign lands at the time. Cook’s directions, especially regarding sexually-transmitted infections, demonstrated an awareness of the problem and in execution comprised a worthwhile strategy for prevention.

Sanitation and Living Conditions

Of course, disease prevention involved more than avoiding infectious disease vectors. Living conditions on board a ship played a major role in maintaining a healthy crew. As one might imagine, spending over three years in a big wooden box in the middle of the ocean presented a fair quantity of challenges in this regard. Food quality has already been discussed thoroughly, but its importance warrants further mentioning here. Disregarding Cook’s voyages,
food was often of the lowest quality, particularly on British vessels. French and Spanish ships were reputed to place an emphasis on carrying fresher meats and broths than their English counterparts. Additionally, these ships were frequently overcrowded. Some crew members were allotted as little as six square feet for their living quarters. If more space could not be spared to provide an extra few inches of living space, then of course no room would be made for additional bedding and clothing. Sailors often slept in the same bedding for months or even years at a time, and wore only the clothes they originally boarded with. This problem was only exacerbated by the sewage disposal methods. Buckets were used as latrines, and their contents would have to periodically be emptied over the side of the ship (Hudson 1956).

While these conditions were far from enviable, they only worsened if a crew member were to fall ill. Most sick bays were in a sorry state. James Lind, who was discussed above for his lauded *Treatise on Scurvy*, provided an evocative description of a typical sick bay via Lind scholars A. Edward A. Hudson and Arthur Herbert:

“Here the patient lay in hammocks, suspended in rows, huddled one upon another, for as little as fourteen inches of space was allotted for each bed. Into these quarters little or no light of day entered, ‘each patient breathing the stagnant atmosphere of the morbid air, exhaling from their own excrements and diseased bodies’” (Hudson 1956).

Beyond the obvious ordeal of falling ill at sea, treatment of these patients was clearly not conducive to regaining health.

The dangers of these poor conditions transcended the death and disease directly caused. The state of the naval working environment was highly publicized, and as one might expect, learning about the life of a seaman was not an effective advertisement for the Royal Navy.
Voluntary enlistment alone did not generate near enough of a workforce to fulfill the Navy’s intentions. As a result, press gangs formed. These press gangs functioned as an extraordinarily persuasive recruiting service by roaming the streets of port towns and forcing any poor soul they happened across into service. Predictably, those who were press-ganged into service were often not the least bit prepared for the life of a sailor. In an extreme form of this phenomenon, dire shortages of crewmen forced the Royal Navy to remove men from prison to serve on a vessel. Given that 18th century British prisons were essentially factories for typhus and dysentery infection, these men were generally of the poorest health and physical condition (Hudson 1956). Generating a sufficient crew in this manner served to further detract from ship conditions and sanitation, which in turn caused public perception of naval work to plummet and created a further deficit in enlistment. Suffice it to say, working on a ship for three years was not a glamorous business.

Cook had a number of systems for dealing with these conditions and improving hygiene and sanitation. For example, he instituted a shift rotation schedule for his crew in which a 24-hour period was divided into four separate portions: Four hours on duty where the crewmen would tend to the ship, eight hours off for relaxation or sleep, another four on, then another eight off. This deviated from the traditional shift schedule in that it provided eight hour resting periods to allow for sufficient sleep. The traditional schedule used alternating four-hour rest and sleep periods, which would only allow for four hours of sleep at a time. By retaining the four-hour work periods, Cook prevented excessive exposure to weather conditions. Should inclement weather occur, Cook also ensured that each crew member would have dry clothes to change into (Angus 1927).
Beyond this panache for improving working conditions and a great enthusiasm for general cleanliness and order, little is known of Cook’s methods for improving shipboard sanitation and hygiene. His journals, when discussing health care, refer almost entirely to diet and scurvy prevention. Luckily, the individual whose teachings Cook was known to be a firm believer in, the seemingly omnipresent (at least as far as this paper is concerned) James Lind, made his beliefs on maritime sanitation well-known (Hudson 1956).

Unsurprisingly, Lind shared Cook’s affinity for cleanliness. He proposed a morning routine in which each hammock would be taken up to the deck to air out. Additionally, the gun ports would be opened to air out the ship, and the deck would be washed. This veered from the traditional maritime routine in which the deck was washed in the evening. Lind’s reasoning for this is unclear, but it is possible that washing the deck in the morning allowed the sun to aid in the drying process rather than allow the water to sit all night. He also insisted that the hammocks should be washed at least once per month. Also in the interest of general cleanliness, Lind discussed a “delousing process” intended as a further method of cleaning individual sailors. Interestingly, this likely proved quite effective in the prevention of louse-borne typhus despite the fact that Lind did not believe typhus to be “propagated by animalculae” (qtd. in Hudson 1956). In another happy accident, Lind may have stumbled onto an effective malaria prevention technique. The prevailing view of malaria etiology at the time posited that malaria was spread through “bad air.” After noticing that African natives would light a fire near them when they slept on the ground (to clean the air, Lind assumed), Lind decided that doing the same would be an effective way to prevent malaria. He wasn’t entirely wrong, but this fire strategy worked because it discouraged mosquitos from approaching, not because it cleaned the air (Hudson 1956).
The previous point may illustrate a better-to-be-lucky-than-good portrayal of Lind, but many of his successes were entirely genuine. His meticulous approach to cleanliness and sanitation proved successful in many kinds of disease prevention. While his beliefs regarding typhus etiology were debunked earlier, his preferred methods for preventing typhus transmission amongst press-ganged crew members were still effective. These methods are as follows:

“The most effectual preservative against this infection, during a press, would be to appoint a ship for receiving all ragged and suspected persons, before they are permitted into the receiving guardship. This ship should be furnished with slops, shirts, bedding, and all the necessary articles of seamens apparel; with soap, tubs, and proper conveniences for bathing, and with a room upon deck for fumigating of clothes. Every suspected person, whether impressed at sea, or on shore, should first be put on board her; their stay on her, however, should be short, as soon as they are stripped of their rags, well washed and cleaned, they should be supplied with new of their apparel as appears tolerably good ought to be cleaned, or, if necessary, fumigated with brimstone and returned to them; but it will be absolutely necessary to destroy all filthy rags, and all such clothes as are brought from Newgate and other prisons” (sic) (qtd. in Hudson 1956).

While it cannot be said for certain how faithful Cook was to Lind’s teachings, Lind’s influence on the captain was well-known so it is reasonable to believe that Cook may have used many of Lind’s techniques. Given Lind and Cook’s shared general meticulousness, sharing cleaning and sanitation methods as well seems more than likely.

Conclusion
Regardless of how closely Cook adhered to Lind’s theories, one cannot ignore how effectively he maintained the health of his crew. Common diseases of the era (primarily scurvy, typhus to a lesser degree) were handled with relative ease. Despite struggling with malaria and dysentery in his first voyage, only one man on his second voyage perished from an as-of-yet-unidentified disease. In fact, so ingrained in the minds of his crew were Cook’s health preservation habits, and so impressed were they by the results of said habits, that they perpetuated the tenacity with which Cook handled health during his third voyage even after Cook’s death in the Hawaiian Islands. The crew’s health on this voyage remained exemplary until their return to England (Kodicek 1969). Cook’s longtime quartermaster, Alexander Home, had the following to say regarding Cook’s practices:

“When one Considers it it is astonishing How we have Come to so little Damage in this way during so Long a time… Captain Cook raised this spirit Amoungst us by his Example for scarc(e)ly any thing Came wrong to him that was Green and he was as Carefull in providing Vegitables for the Messess of the Crews as for his own Table and I do Belive that in this Means Consisted his graund Art of preserving his people in Health During so Many of the Longest and Hardest Voyages that was Ever Made” (sic) (qtd. in Kodicek 1969).

Cook’s efforts in dealing with scurvy, infectious disease, and putrid general living conditions resulted in an oeuvre that would be the envy of any health-minded seaman for the better part of the next two-hundred years. While the discrete factors leading to Cook’s success were many, I argue that these factors were but extensions of one key characteristic: Cook’s meticulous nature in dealing with health on his vessels. Whether it be ensuring the presence of proper antiscorbutic foods and clean water, responding tenaciously to the presence of infectious disease, or making
use of Lind’s similarly stringent sanitation methods, Cook’s strict dedication to health undoubtedly saved a great number of lives during his voyages, and his recommendations to the Royal Navy after his highly successful second voyage likely saved countless others.

Bibliography

