
University of Minnesota Morris Digital Well University of Minnesota Morris Digital Well 

University of Minnesota Morris Digital Well University of Minnesota Morris Digital Well 

Student Research, Papers, and Creative Works Student Scholarship 

6-4-2020 

Summed Batch Lexicase Selection on Software Synthesis Summed Batch Lexicase Selection on Software Synthesis 

Problems Problems 

Joseph Deglman 
University of Minnesota - Morris, deglm006@morris.umn.edu 

Follow this and additional works at: https://digitalcommons.morris.umn.edu/student_research 

 Part of the Other Computer Sciences Commons 

Recommended Citation Recommended Citation 
Deglman, Joseph, "Summed Batch Lexicase Selection on Software Synthesis Problems" (2020). Student 
Research, Papers, and Creative Works. 7. 
https://digitalcommons.morris.umn.edu/student_research/7 

This Article is brought to you for free and open access by the Student Scholarship at University of Minnesota 
Morris Digital Well. It has been accepted for inclusion in Student Research, Papers, and Creative Works by an 
authorized administrator of University of Minnesota Morris Digital Well. For more information, please contact 
skulann@morris.umn.edu. 

https://digitalcommons.morris.umn.edu/
https://digitalcommons.morris.umn.edu/student_research
https://digitalcommons.morris.umn.edu/studentschol
https://digitalcommons.morris.umn.edu/student_research?utm_source=digitalcommons.morris.umn.edu%2Fstudent_research%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/152?utm_source=digitalcommons.morris.umn.edu%2Fstudent_research%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.morris.umn.edu/student_research/7?utm_source=digitalcommons.morris.umn.edu%2Fstudent_research%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:skulann@morris.umn.edu


Summed Batch Lexicase Selection on Software Synthesis
Problems

Joseph Deglman
Division of Science and Mathematics

University of Minnesota, Morris
Morris, Minnesota, USA 56267

deglm006@morris.umn.edu

June 4, 2020

ABSTRACT
Lexicase selection is one of the most successful parent se-
lection methods in evolutionary computation. However, it
has the drawback of being a more computationally involved
process and thus taking more time compared to other selec-
tion methods, such as tournament selection. Here, we study
a version of lexicase selection where test cases are combined
into several composite errors, called summed batch lexicase
selection; the hope being faster but still reasonable success.
Runs on some software synthesis problems show that a larger
batch size tends to reduce the success rate of runs, but the
results are not very conclusive as the number of software
synthesis problems tested was small.

1. INTRODUCTION
Evolutionary Computation (EC) is a field of Computer

Science which utilizes concepts from evolutionary biology in-
cluding: mutation, reproduction, and survival of the fittest.
These tools can make searching for solutions more efficient
than other methods, like random search and hill climbing. [5]

One application of EC is evolving software programs that
would be difficult to develop by hand. To do this, we gener-
ate a population of randomly generated candidate programs.
We then run the programs on a given series of test cases. For
each test case, we calculate an error value measuring how
much the output of the program differed from the desired
output of the program for that case. We use these errors to
determine which programs perform well and should be used
as parents for the next generation. This process is contin-
ued until a solution is found or until a specified number of
generations occur (the later case being an unsuccessful run).

In Section 2 we’ll get an overview of lexicase selection. In
Section 3 we’ll talk about related work. In Section 4 we’ll
talk about the selection method used in this study. Section 5
will discuss software synthesis problems and describe the
specific ones used in this study. Section 6 will describe the
setup of the study and discuss the results. Finally, Section 7
will provide a conclusion.

This work is licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/.
.

2. LEXICASE SELECTION
Lexicase selection is a parent selection algorithm that works

by randomly ordering the set of test cases (Fig. 1, line 2).
Each individual of the current generation will then be eval-
uated against the first case in this random ordering (Fig. 1,
line 3). If multiple candidates perform equally well on the
first test case, they then move on to the next round to be
evaluated against the second test case (Fig. 1, line 4). This
goes on until we are left with only one candidate for our par-
ent or until we have gone through all test cases. If the latter
occurs then all remaining individuals have identical error
values, and a random candidate among those remaining will
be selected (Fig. 1, line 6).

3. RELATED WORK
J. Hernandez, A. Lalejini, E. Dolson, and C. Ofria [4] pro-

posed two variants of lexicase selection: down-sampled lex-
icase selection and cohort lexicase selection. Down-sampled
lexicase selection works by only using a random subset of
the test cases each generation. Cohort lexicase selection di-
vides the population each generation into cohorts that each
are evaluated on a subset of all the test cases. Test cases are
distributed so that all of them are used in exactly one cohort
each generation. They show that random subsampling can
be used to increase the success rate over a given amount of
computation time.

V. V. de Melo, D. V. Vargas, and W. Banzhaf [2] proposed
batch tournament selection (BTS) as a selection method.
Their implementation ordered the test cases decreasing by
difficulty and split them into groups of equal sizes. Tour-
nament selection was then performed, picking the individ-
ual with the best mean error on that batch of cases. They
tested this method on a selection of regression problems.
They found that BTS behaved quite similarly to lexicase se-
lection in terms of success rate and genetic diversity while
also taking significantly less computation time.

S. Aenugu and L. Spector [1] used batch lexicase selection
with learning classifier systems (LCS). The selection method
used here creates batches of test cases then loops through
them. Candidates progress to the next round of batch lex-
icase if their fitness for the round (defined as a proportion
of correct matches on the current batch of cases) is above
a threshold given as an input parameter. This process con-
tinues until only one individual remains or until all batches
are exhausted; in the former case the remaining individual



A B C D E
(1) {20, 6, 5, 2} {6, 5, 7, 4} {7, 6, 13, 2} {7, 6, 4, 13} {7, 6, 4, 2} initial order
(2) {2, 6, 20, 5} {4, 5, 6, 7} {2, 6, 7, 13} {13, 6, 7, 4} {2, 6, 7, 4} randomized order (4,2,1,3)
(3) {2, 6, 20, 5} {4, 5, 6, 7} {2, 6, 7, 13} {13, 6, 7, 4} {2, 6, 7, 4} first round
(4) {2, 6, 20, 5} {4, 5, 6, 7} {2, 6, 7, 13} {13, 6, 7, 4} {2, 6, 7, 4} second round
(5) {2, 6, 20, 5} {4, 5, 6, 7} {2, 6, 7, 13} {13, 6, 7, 4} {2, 6, 7, 4} third round
(6) {2, 6, 20, 5} {4, 5, 6, 7} {2, 6, 7, 13} {13, 6, 7, 4} {2, 6, 7, 4} final round

Figure 1: Process of lexicase selection algorithm on a small set of programs. We have programs A,B,C,D,
and E, each with four error values. In each round the best errors are bolded. If a given program doesn’t
have the best error in a given round they get crossed out in that round and also in the subsequent rounds,
indicating that in has been eliminated from consideration. E gets selected in this case.

A B C D E
(1) {20, 6, 5, 2} {6, 5, 7, 4} {7, 6, 13, 2} {7, 6, 4, 13} {7, 6, 4, 2} initial order
(2) {2, 6, 20, 5} {4, 5, 6, 7} {2, 6, 7, 13} {13, 6, 7, 4} {2, 6, 7, 4} randomized order
(3) {(2, 6), (20, 5)} {(4, 5), (6, 7)} {(2, 6), (7, 13)} {(13, 6), (7, 4)} {(2, 6), (7, 4)} partitioned
(4) {8, 25} {9, 13} {8, 20} {19, 11} {8, 11} sums
(5) {8, 25} {9, 13} {8, 20} {19, 11} {8, 11} first round
(6) {8, 25} {9, 13} {8, 20} {19, 11} {8, 11} final round

Figure 2: Process of the summed batch lexicase selection algorithm on the same programs as Figure 1 with
the same randomization. Program E gets selected here also.

A B C′ D E
(1) {20, 6, 5, 2} {6, 5, 7, 4} {8, 6, 1, 2} {7, 6, 4, 13} {7, 6, 4, 2} initial order
(2) {2, 6, 20, 5} {4, 5, 6, 7} {2, 6, 8, 1} {13, 6, 7, 4} {2, 6, 7, 4} randomized order
(3) {2, 6, 20, 5} {4, 5, 6, 7} {2, 6, 8, 1} {13, 6, 7, 4} {2, 6, 7, 4} first round
(4) {2, 6, 20, 5} {4, 5, 6, 7} {2, 6, 8, 1} {13, 6, 7, 4} {2, 6, 7, 4} second round
(5) {2, 6, 20, 5} {4, 5, 6, 7} {2, 6, 8, 1} {13, 6, 7, 4} {2, 6, 7, 4} final round

Figure 3: Here we use lexicase selection again on the programs A, B, D, and E from above, in addition to
program C′, which is program C from above with different first and third errors. Here we end on the third
round since E was the only program left at the end of that round.

A B C′ D E
(1) {20, 6, 5, 2} {6, 5, 7, 4} {8, 6, 1, 2} {7, 6, 4, 13} {7, 6, 4, 2} initial order
(2) {2, 6, 20, 5} {4, 5, 6, 7} {2, 6, 8, 1} {13, 6, 7, 4} {2, 6, 7, 4} randomized order
(3) {(2, 6), (20, 5)} {(4, 5), (6, 7)} {(2, 6), (8, 1)} {(13, 6), (7, 4)} {(2, 6), (7, 4)} partitioned
(4) {8, 25} {9, 13} {8, 9} {19, 11} {8, 11} sums
(5) {8, 25} {9, 13} {8, 9} {19, 11} {8, 11} first round
(6) {8, 25} {9, 13} {8, 9} {19, 11} {8, 11} final round

Figure 4: Summed batch lexicase on the same programs as in Figure 3. Here program C′ is selected even
though it was not selected in Figure 3.



is chosen as a parent and in the latter case an individual is
chosen at random of those remaining to be a parent. This
selection method was shown to create more general rules for
LCS than the standard lexicase selection method did.

4. A NEW SELECTION METHOD
Summed batch lexicase selection works like lexicase se-

lection, but test cases are grouped together and composite
scores from these are used following the same method as
lexicase selection. The implementation of summed batch
lexicase selection used in this study works in the following
manner, as shown in Figure 2:

1. Test cases are randomized (Fig. 2 line 2)

2. During a selection test cases are grouped into parti-
tions of equal sizes (except possibly the final partition).
(Fig. 2 line 3)

3. The errors of the test cases in each partition are summed
and placed in a new vector. (Fig. 2 line 4)

4. Lexicase selection is performed with the new vector of
composite errors. (Fig. 2 lines 5 and 6)

The batch size determines how many test cases are grouped
together into one error value. A batch size of one is equiva-
lent to lexicase selection and a batch size of two means that
pairs of the original error values are used to make up the
new error vector.

Figures 3 and 4 together demonstrate that this selection
method does have a different behavior than lexicase selection
in some cases as they select different individuals.

5. SOFTWARE SYNTHESIS PROBLEMS
Software synthesis is the automated creation of software

programs to fulfill a certain task. Sometimes, we have prob-
lems that we want to solve, but we do not know how to solve
them. To do this we need to develop some notion of correct
behavior for the program. This can be done by producing
test cases that describe the expected behavior for given in-
puts. And then using some metric to determine how close to
the expected behavior a program is on each case, we produce
a set of error values.

Helmuth and Spector present a collection of software syn-
thesis problems based on introductory computer science prob-
lems. [3] We’ll use two here: smallest and median.

Smallest The goal of this problem is to produce a program
that returns the smallest of four input integers.

Median The goal of this problem is to produce a program
that returns the median of three input integers.

Both of these software synthesis problems require condi-
tionals in a solution that satisfies the specification given in
the problem. They also are similar in that they both return
one of the inputs. Both of these problems also only have
boolean errors for each of their test cases, so the only infor-
mation given is whether the program got that test case cor-
rect or not, without any notion of partial correctness. They
both use 100 test cases. Smallest has 5 cases that are given
by hand and the other cases are semi-randomly generated
(making sure to have some cases where there are duplicates
in the inputs). Median only uses semi-randomly generated
cases (also includes some cases chosen with duplicates in the
inputs).

Batch Size
1 2 4 10

Problem
Median 90 84 72 44
Smallest 100 100 100 100

Table 1: Success rate (in percentages out of 50 runs)
for median and smallest for different batch sizes.
Smallest succeeded in all cases. The median prob-
lem had some unsuccessful runs for all batch sizes
and succeeded less frequently as batch size increases.

6. EXPERIMENTAL DESIGN
AND RESULTS

The Clojush1 implementation of PushGP [6] was used in
this study. PushGP is an evolutionary computation system
designed for evolving programs. It uses stacks to control
data-flow which provides a robust representation for pro-
grams, allowing for programs to changed slightly and still
be able to execute.

This study looked at the two previously described software
synthesis problems: smallest and median. These problems
were attempted using four different batch sizes of summed
batch lexicase selection: 1 (the same as standard lexicase
selection), 2, 4, and 10. Fifty runs of each combination of
problem and batch size were done.

Table 1 shows that all runs of the smallest problem were
successful, but the median problem had some unsuccessful
runs and had less successes as the batch-size was increased.
As smallest did not have any unsuccessful runs, the success
rate is not helpful in measuring the effect of batch size on
success, so we will look at success generation (defined as the
generation in which a run first finds a successful program or
200 in the case of an unsuccessful run).

Figure 5 shows that the mean success generation from the
sample is higher for all runs of smallest that used batching
compared to the run that used standard lexicase selection.
Another interesting thing to note is that the variance in
success generation also seems to be greater for the batched
runs.

Figure 6 shows that the mean success generation on batch
sizes 1, 2, and 4 with the median problem are about the
same. The success generation on a batch of ten is much
higher than the other batch sizes. With a batch size of 2 the
mean success generation is lower than with a batch size of
1; this could possibly be an anomaly that would disappear
with more runs.

A pairwise Wilcox test (shown in Table 2) was done to
determine if there was any statistically significant differ-
ence between the number of successes of each set of runs.
The test showed very high confidence that the two problems
had different mean success generations. This is because the
smallest problem is easier than the median problem. The
test also showed that for the median problem the batch size
of ten had a mean success generation that was significantly
different from the other batch sizes (which from Fig. 6 we
know is significantly worse) and also shows that there is no
significant difference observed in the mean success for the
batch sizes of 1,2, and 4 of the median problem.

1This repository includes an implementation of summed
batch lexicase selection: https://github.com/deglm006/
Clojush



The batch size seems to have had little effect on the suc-
cess of the median problem for smaller batches and had
a much greater negative effect at higher batch sizes. The
smallest problem on the other hand seemed to display more
of an effect of the batch size on for smaller sizes, but we see
very little difference between 4 and 10.

7. CONCLUSION
Batch size seems to affect the two test problems differ-

ently, although the differing difficulties could be making it
seem this way. Many of the runs for the median problem
were unable to produce a successful program especially for
a batch size of ten. Overall, the results are inconclusive. A
larger batch size does seem to have the effect of making it
take more generations to find a successful program, although
it is not clear to what extent this is the case. Further study
could look at what improvements this makes upon run time,
although it seems like it would not show much improvement
if any, as all test cases still need to be computed for all
individuals using this method. Another area of potential
study would be to look at using some other way of turning
batches into a single value. Median, maximum, minimum,
and weighted averages are possible choices.

Acknowledgments
Thanks to the University of Minnesota Undergraduate Re-
search Opportunities Program (UROP) for funding this project.
I would like to thank my advisor on this project, Nic McPhee,
for his guidance and feedback.

8. REFERENCES
[1] S. Aenugu and L. Spector. Lexicase selection in

learning classifier systems. In Proceedings of the
Genetic and Evolutionary Computation Conference,
GECCO ’19, page 356–364, New York, NY, USA, 2019.
Association for Computing Machinery.

[2] V. V. de Melo, D. V. Vargas, and W. Banzhaf. Batch
tournament selection for genetic programming: The
quality of lexicase, the speed of tournament. In
Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO ’19, page 994–1002,
New York, NY, USA, 2019. Association for Computing
Machinery.

[3] T. Helmuth and L. Spector. General program synthesis
benchmark suite. In Proceedings of the 2015 Annual
Conference on Genetic and Evolutionary Computation,
GECCO ’15, page 1039–1046, New York, NY, USA,
2015. Association for Computing Machinery.

[4] J. G. Hernandez, A. Lalejini, E. Dolson, and C. Ofria.
Random subsampling improves performance in lexicase
selection. In Proceedings of the Genetic and
Evolutionary Computation Conference Companion,
GECCO ’19, page 2028–2031, New York, NY, USA,
2019. Association for Computing Machinery.

[5] S. Luke. Essentials of Metaheuristics. Lulu, second
edition, 2013. Available for free at
http://cs.gmu.edu/~sean/book/metaheuristics/.

[6] L. Spector and N. F. McPhee. Expressive genetic
programming: Concepts and applications. In
Proceedings of the 2016 on Genetic and Evolutionary
Computation Conference Companion, GECCO ’16

●

●

●

●

●

●

●

●

●

●

0

50

100

150

1 2 4 10
Batch Size

S
uc

ce
ss

 G
en

er
at

io
n

Figure 5: Box plot for smallest problem. This shows
how many generations it took to find a successful
program for different batch sizes. Increasing the
batch size does seem to increase the number of gen-
erations needed to find a solution, but there doesn’t
seem to much difference between batch sizes of 4
and 10.

Companion, page 589–608, New York, NY, USA, 2016.
Association for Computing Machinery.



1.median 2.median 4.median 10.median 1.smallest 2.smallest 4.smallest
2.median 1.0000 - - - - - -
4.median 1.0000 1.0000 - - - - -
10.median 6.0e-05 1.0e-05 0.0031 - - - -
1.smallest 1.8e-13 1.1e-11 3.2e-12 6.8e-16 - - -
2.smallest 6.5e-10 3.1e-07 4.4e-08 4.3e-15 8.9e-05 - -
4.smallest 6.3e-11 5.2e-09 1.7e-09 2.3e-15 0.1877 0.2514 -
10.smallest 7.5e-12 7.9e-10 2.3e-10 1.3e-15 0.2962 0.0769 1.0000

Table 2: Pairwise comparisons of mean success generation using wilcoxon rank sum test. Labels along the
top and side refer to particular combinations of batch sizes and problems (1.median would be the runs of
the median problem done with a batch size of 1). Entries give p-values with the null hypothesis of the
two configurations having the same mean success generation. This shows that median and smallest have a
difference in success generation. It also shows the mean success generation for batch sizes of 1 and 2 of
smallest are significantly different.

50

100

150

200

1 2 4 10
Batch Size

S
uc

ce
ss

 G
en

er
at

io
n

Figure 6: Box plot for median problem. Unsuccess-
ful runs have a success generation of 200. The case
with batch size of 10 is interesting. Most of the runs
for this case did not succeed within the 200 gener-
ation limit and the mean generation of success is
significantly worse for this case.


	Summed Batch Lexicase Selection on Software Synthesis Problems
	Recommended Citation

	tmp.1591984805.pdf.QAnpc

