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HIGHLIGHTS:  

- Different immune responses may explain temperament-specific health outcomes. 

- Rats were tested for stable behavioral phenotypes by testing on two different arenas. 

- Behavioral inhibition defined as slower-than-median approach latency on both arenas. 

- Behaviorally-inhibited (BI) rats had a greater innate response than non-inhibited (NI). 

- BI rats had a dampened delayed-type hypersensitivity response compared to NI rats. 

 

 

 

ABSTRACT 

Stable behavioral traits (temperament, personality) often predict health outcomes. 

Temperament-specific differences in immune function could explain temperament-specific 

health outcomes, however, we have limited information on whether immune function varies by 

personality. In the present study, we examined the relationship between a basic behavioral 

trait (behavioral-inhibition vs. non-inhibition) and two immune responses (innate inflammation 

and delayed-type hypersensitivity, DTH) in a rodent model. In humans, behavioral inhibition 

(fearful temperament) is associated with altered stress physiology and allergies. In laboratory 

rats, the trait is associated with elevated glucocorticoid production. We hypothesized that 

behavioral inhibition is associated with glucocorticoid resistance and dampened T-helper 1 cell 

responses often associated with chronic stress and allergies. Further, this immune profile would 

predict poorly-regulated innate inflammation and dampened DTH. In male Sprague-Dawley 

rats, we quantified consistent behavioral phenotypes by measuring latency to contact two kinds 

of novelty (object vs. social), then measured lipopolysaccharide(LPS)-induced innate 

inflammation or keyhole limpet hemocyanin(KLH)-induced DTH. Behaviorally-inhibited rats had 

heightened glucocorticoid and interleukin-6 responses to a low/moderate dose of LPS and 

reduced DTH swelling to KLH re-exposure compared to non-inhibited rats. These results suggest 

that behavioral inhibition is associated with a glucocorticoid resistant state with poorly 

regulated innate inflammation and dampened cell-mediated immune responses. This immune 

profile may be associated with exaggerated T-helper 2 responses, which could set the stage for 

an allergic/asthmatic/atopic predisposition in inhibited individuals. Human and animal models 

of temperament-specific immune responses represent an area for further exploration of 

mechanisms involved in individual differences in health. 

Keywords: innate immune response, delayed type hypersensitivity, temperament, personality, 

individual differences, inflammation 

 

  



TEMPERAMENT AND IMMUNE RESPONSES 

3 
 

1. Introduction 

 Specific temperaments (behavioral phenotypes or personalities) have been associated 

with specific health outcomes. One mechanism by which temperament may moderate health 

outcomes is through differential temperament-specific immune regulation (Capitanio et al., 

2008; Zozulya et al., 2008; Rangassamy et al., 2016). To date, we have relatively limited 

information on the relationship between temperament and immune function. Many studies 

have investigated the immune parameters of a variety of animal species and populations in 

response to environmental demands, such as parasite load (Koprivnikar et al., 2012; Barber & 

Dingemanse, 2010) and social competition/aggression (Azpiroz et al., 2008; Capitanio et al., 

2008, 2011; Chun et al., 2017). This has been researched at the behavioral level (e.g. behaviors 

that affect exposure to parasites/antigens) and at the population level, but potential 

physiological mechanisms at the individual level are still unclear. 

In the current study, we examined immune responses in laboratory rats that were 

characterized as behaviorally-inhibited, non-inhibited, or mixed. At the individual level, 

inhibition and exploration are behavioral traits that can be relatively stable over time and 

across conditions and may involve stable differences in underlying physiology (Cavigelli & 

McClintock, 2003, Roberts et al., 2006; Réale et al., 2007; Bell et al., 2009; Cavigelli et al., 2009). 

In humans, Behavioral Inhibition (BI) is defined as a fearful or avoidant response to a wide array 

of novel experiences and is evident in approximately 20% of children studied in the US (Garcia-

Coll et al., 1984; Kagan et al., 1984). BI humans are prone to develop environmental allergies 

and asthma, conditions that are broadly considered to reflect a T-helper 2 cell (TH2) immune 

polarization (Kagan et al., 1991; Bell, 1992; Kim et al., 2006; Gulec et al., 2010; Heffner et al., 

2014). BI individuals also show elevated basal glucocorticoid production (Kagan et al., 1987; 

Schmidt et al., 1997; Smider et al., 2002; Baugh et al., 2017) associated with negative health 

and immune outcomes (summarized in Chrousos & Kino, 2009; Miller et al., 2002; Webster 

Marketon & Glaser, 2008; Picard et al., 2014). In animals, BI/neophobia/exploration (defined by 

approach latency, locomotion, and/or time interacting with novel objects) are relatively stable 

traits over time and across contexts (Verbeek et al., 1994; Wilson et al., 1994; Dingemanse et 

al., 2002; Cavigelli & McClintock, 2003; Mason et al., 2006; Cavigelli et al., 2007; Krajl-Fiser et 
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al., 2007; Bell et al., 2009; Caruso et al., 2014). Like in humans, BI male rats, defined as having 

consistently slower-than-median approach latencies in two novel conditions, have low-grade 

elevation in glucocorticoid production which is associated with shortened life span (Cavigelli & 

McClintock, 2003; Cavigelli et al., 2007; Cavigelli et al., 2009). An animal model of 

temperament-associated differences in immune responses provides a system to experimentally 

test origins and mechanisms that underlie the relationship between BI/fearful temperament 

and health risks. 

Studies that have linked individual behavioral profiles to immune system competence 

do not converge on a clear pattern. In free-ranging house finches, low-exploratory individuals 

invested less in constitutive defenses in favor of inducible defenses (i.e. occasionally spending a 

lot of energy to fight infections rather than investing in a continuous low-level prevention; 

Zylberberg et al. 2014), but in fairy wrens, low-exploratory individuals had higher investment in 

constitutive defenses (Jacques-Hamilton et al., 2017). In greenfinches, reactive individuals 

mounted higher innate and adaptive immune responses compared to proactive birds (Sild et al., 

2011). In farm pigs, low-active animals had decreased lymphocyte proliferation in response to 

KLH exposure and lower expression of transcripts associated with innate immunity at baseline, 

with no TH1/TH2 shift (Bolhuis et al., 2003; Oster et al., 2015; cf. Geverink et al. 2004). In lab-

reared zebrafish, individuals neophobic to novel objects demonstrated a heightened basal pro-

inflammatory profile (i.e. increased brain IL-1β and reduced IL-10 expression), and fish that had 

less preference for social partners had reduced brain IFN-γ expression, indicating dampened 

cell-mediated immunity (Kirsten et al., 2018). Similarly, in wild male mice exposed to repeated 

social confrontations, anxious/neophobic mice showed a comparatively lower T 

helper/regulatory T cell ratio in the spleen indicating general immunosuppression compared to 

less fearful mice (Rangassamy et al., 2016). These results suggest that inhibition/exploration 

behavioral phenotypes are associated with different immune regulation, but that the specific 

direction of this regulation is unclear. 

Population-level studies have shown that inhibited or low-exploration species tend to 

invest less in innate immune responses and more in adaptive immunity (Lee, 2006; Martin et 

al., 2006; 2007; c.f. Johnson et al., 2012). But on the individual level, the opposite has been 
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proposed:  less exploratory individuals invest more in innate immunity (Zuk & Stoehr 2002; Lee, 

2006; Adelman & Martin, 2009), perhaps at the cost of immune tolerance (e.g. Medzhitov et al., 

2012). Some of the complications in this area are that free-ranging individuals with different 

temperaments expose themselves to different kinds and amounts of antigens, and in more 

controlled settings, immune function is quantified in many different ways, including estimates 

of immune function in the absence of an immune challenge.  In addition, there is a variety of 

ways to define and measure behavioral phenotypes. This is particularly true for exploration-

related behaviors that could be driven by two different motivations - i.e. harm avoidance vs. 

novelty seeking (Budaev 1998; Ray & Hansen, 2004). To test whether immune responses are 

functionally different among behavioral phenotypes, we need well-characterized behavioral 

phenotypes and tests of immune function that use standardized antigens presented in 

relatively antigen-free environments (i.e. low bacterial, viral, and parasite loads). In the current 

study, we examined how a basic behavioral trait (Inhibition vs. Non-Inhibition) related to two 

basic functional immune responses (innate inflammation and delayed-type hypersensitivity, 

DTH) in a social mammal, the Sprague-Dawley rat (Rattus norvegicus). 

Briefly, the immune system can be divided into two broad domains: innate and 

adaptive. Cells involved in the innate system are the first to respond at a site of potential 

infection and can mount an inflammatory response within hours (Copeland et al., 2005). They 

are non-specific but recognize a “library” pathogen-associated molecular patterns (PAMPs), of 

which lipopolysaccharide (LPS) is prominent. (LPS is an endotoxin found in the cell walls of 

Gram-negative bacteria and is detected by a variety of innate immune cells that secrete 

cytokines that rapidly attract and activate other immune cells; notably macrophage-secreted 

interleukin-6, IL-6, triggers the sickness response, Papanicolaou et al., 1998; Bluthé et al., 2000; 

Visintin et al., 2001). Adaptive responses are slower than innate responses and are mediated by 

T-helper cells: intracellular pathogens stimulate dendritic cells to signal naive T-helper cells to 

mature into T-helper 1 cells (TH1) that guide cell-mediated adaptive immunity, while 

extracellular pathogens stimulate T-helper cells to mature into T-helper 2 cells (TH2) that guide 

humoral adaptive immunity. Typically, once TH1/TH2 differentiation occurs, resulting cytokines 

promote continued similar T-helper cell differentiation; some have argued that individuals can 
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develop a bias toward a greater TH1 or TH2-mediated adaptive response (e.g. an allergic 

phenotypes are often referred to as TH2 polarization). (In terms of adaptive responses, delayed-

type hypersensitivity (DTH) is an easily-observed TH1 cell-mediated response that can be 

measured non-invasively. DTH involves a sensitization phase where naive T-helper cells develop 

into antigen-specific TH1 cells, and an effector phase where antigen re-exposure causes antigen-

specific TH1 cells to secrete cytokines that recruit large numbers of non-specific inflammatory 

cells to the antigen which results in localized induration within 24-72 hours (Punt et al., 2018).)  

Experimentally-induced chronically-elevated glucocorticoid exposure can alter both 

innate and TH1-mediated immune function. Chronic stress can induce glucocorticoid resistance 

in macrophages and contribute to an innate pro-inflammatory profile (Stark et al., 2001). 

Glucocorticoid drugs can inhibit macrophage-induced TH1 response with little effect on 

macrophages, thus stimulating an exaggerated and prolonged innate immune activity (Mosser 

& Edwards, 2008; van de Garde et al., 2014; Kelly et al., 2018). On the flip side, IL-6 stimulates 

HPA axis activity in the short term , though over time may blunt the ACTH response (Lyson & 

McCann, 1991; Mastorakos et al., 1993). The DTH immune response is also affected by 

environmental stressors and glucocorticoid activity. Chronic or inescapable stress in rodents 

leads to elevated glucocorticoid production and suppressed DTH response, that is partially 

glucocorticoid-mediated, with a resulting skew toward increased TH2-associated responses and 

reduced glucocorticoid sensitivity (Dhabhar & McEwen, 1997; 1999; Jasnow et al., 2001; 

Bartolomucci et al., 2003; Fleshner et al., 1995; Gazda et al., 2003; Bailey et al., 2009; Li et al., 

2013; reviewed in Haczku & Panettieri, 2010). Last, chronic corticosteroid overexposure (in vitro 

and in vivo) reduces IL-12 production thereby reducing TH1 proliferation which indirectly drives 

TH2 polarization (DeKruyff et al., 1998). Failure to suppress TH2 development may result in the 

heightened allergic responses seen in behaviorally inhibited people. 

In the current study, we examined whether rat behavioral inhibition, which is associated 

with increased basal glucocorticoid production, is also associated with altered immune 

function. The working hypothesis is that BI is comparable to chronic stress and/or long-term 

overexposure to glucocorticoids, and thus is associated with immunological profiles associated 

with chronic glucocorticoid elevations, even in the context of low-stress. We predicted that 



TEMPERAMENT AND IMMUNE RESPONSES 

7 
 

behaviorally-inhibited individuals will show signs of innate inflammatory immune cell 

glucocorticoid resistance and TH2 polarization which will be displayed as elevated systemic 

innate pro-inflammatory response and attenuated TH1 response like localized DTH (Stark et al., 

2001; Elenkov, 2004). To test this hypothesis, we compared immune responses of behaviorally-

inhibited (BI), non-inhibited (NI), and mixed behavior rats in two broad functional immune 

responses that are known to be affected by chronic stress and/or chronic glucocorticoid 

overexposure: lipopolysaccharide (LPS)-induced innate pro-inflammatory IL-6 production and 

keyhole limpet hemocyanin (KLH)-induced DTH swelling. 

 

2. Methods 

We conducted four studies to compare immune responses among behaviorally-

inhibited, non-inhibited, and mixed behavior male rats. In the first two studies, we assessed the 

innate immune response by quantifying circulating IL-6 responses to LPS.  In the third and 

fourth study we quantified TH1-mediated DTH by measuring localized swelling following 

sensitization with and reintroduction of KLH. The methods for housing rats and for classifying 

rat temperament were the same for all studies, as described below. For this initial study on 

temperament and immune function in a controlled laboratory condition, we focused on male 

rats because behavioral inhibition has been associated with elevated glucocorticoid production 

and a truncated life span in males (Cavigelli & McClintock, 2003; Cavigelli et al., 2007; 2009). 

 

2.1. Animals 

Young male Sprague-Dawley rats (55-60 days of age) were purchased from Charles River 

Laboratories (Raleigh, NC), individually-housed in solid bottom plastic cages (43.5 x 23.5 x 20.5 

cm), and maintained on a 12L:12D lighting schedule (lights off at 10:00 h and on at 22:00 h EST).  

Food and water were available ad libitum and cages were cleaned once a week by animal 

facility personnel trained in animal care and handling.  The colony room was maintained at 22°C 

with ~50% humidity.  Rats were allowed to acclimate to laboratory housing and daily handling 

for 1-2 weeks prior to testing.  All methods in this study were approved by the Pennsylvania 

State University Institute for Animal Care and Use Committee and adhered to methods 
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specified in the Guide for the Care and Use of Laboratory Animals (National Research Council, 

2011). Across the 4 studies we used a total of 113 rats (specific numbers in each study given 

below). 

 

2.2. Behavioral Response to Novelty 

To determine generalized and consistent trait-like inhibited/non-inhibited behavior, we 

measured approach latency in two different novel environments: one with rat-sized objects 

(‘novel object arena’; Figure 1a) and one with an unfamiliar rat (‘novel social arena’, Figure 1b) 

(Cavigelli et al. 2007; 2009). Behavior in one arena does not predict behavior in the other arena, 

but individuals that are consistently slow to approach novelty in both arenas maintain this 

behavioral tendency over time (Cavigelli et al. 2007; 2009). This generalized measure of slow 

novelty engagement across different novel contexts is based on early studies of behavioral 

inhibition in children where this behavioral designation was based on reliably slow approaches 

to a wide array of novel experiences, both social and non-social (Garcia-Coll et al., 1984; Kagan 

et al., 1984). Behavioral tests were conducted at 70-75 days of age during the active period 

(13:00-15:00 h) in a room adjacent to the colony room, illuminated with two 25-watt red bulbs 

that provided ~6 lux of illumination at the center of the test arena. These two behavioral tests 

were conducted with all rats in all four studies, with 3-4 days between each test and the ‘novel 

object arena’ tested before the ‘novel social arena’.  

For both arenas, latency to approach novelty was coded as the time from placement in 

the arena to first contact with a novel object or social partner. In the novel social arena, 3 males 

never approached novelty and their latency was coded as 310 seconds (i.e. 10 seconds longer 

than test duration). Rat temperament was assigned according to latencies in the two novel 

arenas: Behavioral-Inhibition was defined as slower-than-median in both arenas, Non-Inhibited 

as faster-than-median on both arenas, and Mixed-Behavior as faster-than-median in one arena 

and slower-than-median in the other (Cavigelli et al., 2007; 2009). Using these criteria, 20-30% 

of rats tested were characterized as Inhibited or Non-Inhibited and the remaining 70-80% 

characterized as Mixed-Behavior. This method of characterizing individuals allows us to identify 
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consistently inhibited vs non-inhibited rats across different contexts, as has been done with 

children. 

2.2.1. Novel Object Arena.  The arena was designed to be minimally anxiety-provoking 

with familiar colony-room odors and low-light conditions (Cavigelli & McClintock, 2003).  To 

provide a complex rat odor, the floor was covered with clean corn cob bedding and sprinkled 

with bedding (feces removed) from all cages in the colony room.  Beyond removal of new feces, 

the arena floor was not further altered between each rat. The square test arena (120 cm x 120 

cm) had white polypropylene walls (46 cm high) and a clear plastic cover.  Three of the four 

corners contained a novel rat-sized object (a plastic tube, an inverted bowl, or a wire tunnel; 

Figure 1a).  During testing, rats were placed into a protected container (clean ceramic bowl with 

5 cm sides or red acrylic tube) and lowered into the empty arena corner.  Rats were videotaped 

for 5 min with a camera placed above the arena and returned to their home cage immediately 

after testing. 

2.2.2. Novel Social Arena.  The novel social arena was the same size and height as the 

Novel Object Arena, but instead of rat-sized novel objects, the arena contained two cages – an 

empty cage and one with an unfamiliar same-sex rat of similar size and age as the test rat 

(Figure 1b) (Cavigelli et al., 2007; 2009).  Rats were introduced to the arena, videotaped, and 

start bowl cleaned as described for the novel object arena. 

 

2.3 Innate Immune Response – Rapid circulating IL-6 response to lipopolysaccharide (LPS). 

To quantify the innate pro-inflammatory response, we injected rats with LPS and 

measured circulating IL-6 levels at regular intervals during the following 10 hrs. For this initial 

set of studies on rat temperament and immune function, we limited analyses to IL-6. The first 

of the two studies was used to identify an intermediate LPS dose to mimic a common immune 

challenge where individual variability in responses can be documented (as opposed to 

commonly-used high doses used to stimulate strong sickness behavior responses. 

2.3.1 Innate Immune Response, Study 1: Identify Appropriate Dose.  We used 4 different 

doses: a commonly-used high dose (125 μg/kg), two intermediate doses (5 and 25 μg/kg), and a 

control dose (0 μg/kg) (Givalois et al., 1994; Salome et al., 2008). LPS, derived from Escherichia 
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coli, serotype 0111:B4, with the same lot number within each study (cat. no. L3012; Sigma-

Aldrich, St. Louis, MO) was diluted with sterile endotoxin-free (USP) saline (Cat. No. 2F7124; 

Baxter, Deerfield, IL) to arrive at an injection volume of 0.5 ml. At ~80 days of age, all rats 

(N=26) were injected intraperitoneally (IP) with one of the four LPS doses 1 hr before the dark 

phase of the light cycle.  Six rats were assigned to each of the 0 and 25 μg/kg conditions and 7 

rats to each of the 5 and 125 μg/kg conditions. To measure circulating IL-6, blood was collected 

by tail-tip amputation immediately before LPS injection and at 2, 4, 6, and 10 hours post-

injection. Blood was collected into untreated tubes, stored on ice for approximately an hour, 

then centrifuged and serum aliquots stored at -80°C until assayed for IL-6. 

Serum IL-6 concentrations were measured with a commercial ELISA kit (Rat IL-6 

Quantikine, cat no. R6000B; R&D Systems, Minneapolis, MN) with a standard range of 62.5-

4000 pg/ml and a sensitivity of 36 pg/ml. Samples were processed according to instructions 

supplied with the kit. Briefly, 75 μl of frozen rat serum was thawed and diluted 1:2 with diluent 

supplied with the kit and duplicate samples (50 μl) analyzed for each rat time point. Mean intra-

assay and inter-assay coefficients of variation were 7.14 and 14.52. 

2.3.2 Innate Immune Response, Study 2:  Compare Innate Pro-inflammatory Responses 

among Behaviorally-Inhibited (BI), Non-Inhibited (NI), and Mixed-Behavior Rats.  We used 30 

rats that had been characterized as either BI (n=6), NI (n=7), or Mixed (n=17) (according to 

methods in section 2.2).  Methods were identical to LPS Study 1, except only the 25 μg/kg LPS 

dose was used, and an additional blood sample at 8 hrs post-LPS injection was collected based 

on results from the prior study. In addition, to test the glucocorticoid resistance hypothesis, we 

compared post-LPS IL-6 to glucocorticoid secretion; blood samples were analyzed for both IL-6 

and corticosterone. Corticosterone concentration was analyzed with a commercial 

radioimmunoassay kit (cat. no. 07-120103; MP Biomedicals, Solon, OH) with a standard range 

of 25-1000 ng/ml and a sensitivity of 25 ng/ml. Samples were processed in duplicate according 

to instructions supplied with the kit, with some minor alterations.  Intra- and inter-assay 

coefficients of variation were 3.44 and 15.79 for a low control sample and 0.78 and 4.65 for a 

high control sample across 3 assays. 
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2.4 Delayed-Type Hypersensitivity – Peripheral swelling response to keyhole limpet hemocyanin 

(KLH) re-exposure. 

KLH is an extremely large heme protein found in the giant keyhole limpet Megathura 

crenulata. It is highly immunogenic, and because KLH is not homologous to any vertebrate 

proteins, it is unfamiliar to mammals commonly used in research and thus ideal for examining 

immune responses to a novel antigen. In addition, KLH causes dendritic cells to sensitize TH1 

cells but macrophages do not trigger a large inflammatory response. KLH is therefore an ideal 

antigen to experimentally-induce a delayed-type hypersensitivity reaction. KLH is introduced 

systemically, then reintroduced locally several weeks later using a subcutaneous injection, and 

DTH response estimated from relative swelling at the injection site. This provides a minimally-

invasive measure of immune response to antigen re-exposure, which is ideal for longitudinal 

and lifespan studies. 

 

2.4.1 Delayed-Type Hypersensitivity Response, Study 1:  Identify Initial Dose/Injection 

Site and Re-Exposure Swelling Response Dynamics.  In prior studies with KLH-induced DTH 

responses, several different injection doses and sites have been used for initial KLH exposure, 

and to estimate DTH swelling, induration measured at different times after re-exposure. To 

identify the best method to document individual variability in DTH responses, we compared 

swelling at 1, 2, and 3 days post-re-exposure after initial exposure at one of three 

locations/doses (Exon et al., 1990; Wood et al., 1993; Fleshner et al., 1995; Gazda et al., 2003). 

We used 27 male Sprague-Dawley rats classified as Behaviorally-Inhibited (n=8), Non-Inhibited 

(n=8), and Mixed-Behavior (n=9) with rats in each temperament group evenly distributed across 

three KLH initial injection sites/doses: (1) 500 μg/kg intraperitoneal (IP; injection volume 0.5 ml; 

n=8), (2) 3mg/kg subcutaneous in caudal tail fold (SC; injection volume 0.2 ml; n=9), or (3) both 

sites (IP+SC; n=10; KLH cat. no. 374825, Calbiochem, San Diego CA). Within each injection site, 

KLH dose/volume was the same for all animals. The initial KLH injection occurred at 95 days of 

age and rats were re-exposed to heat-aggregated KLH (100 μl injection at 20 mg/ml 

concentration) injected into the right hind footpad thirty days later (Exon et al., 1990). As a 

control, an equal volume of saline was injected into the left hind footpad. Right and left footpad 
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swelling was measured 1, 2, or 3 days following re-exposure with a spring-loaded micrometer 

(Mitutoyo, catalog no. 7301). Analyses were conducted on the difference in swelling between 

right (KLH-treated) and left (saline-treated) footpads. 

2.4.2 Delayed-Type Hypersensitivity Response, Study 2: Compare Delayed-Type 

Hypersensitivity Swelling among Behaviorally-Inhibited (BI), Non-Inhibited (NI), and Mixed-

Behavior Rats. 

Based on the results of Study 1, for Study 2 we used only the IP method of KLH sensitization 

(using 500 μg/kg, IP, injection volume 0.5 ml) and measured foot swelling 1 day after KLH re-

exposure (N=30 male rats). Sensitization occurred at 75 days of age and re-exposure 30 days 

later with non-heat-aggregated KLH using the same protocol as KLH Study 1. Behavioral and 

foot-swelling measurements were conducted as in DTH Study 1.  

 

2.5 Statistical Analyses. 

In the Innate Immune Response Study 1, a repeated measures ANOVA was used to 

compare IL-6 responses (2, 4, 6, 10 hr levels) between doses (low, mid, high) as a fixed factor, 

with IL-6 levels at the time of injection (0 hr) as a covariate. To compare IL-6 responses among 

temperaments, overall IL-6 production in response to low and mid LPS doses was estimated 

using area-under-the-curve with respect to ground (AUCg; Pruessner et al., 2003), then AUCg 

compared across temperaments using ANOVA with temperament (BI, NI, Mixed) and dose (low, 

mid) as fixed factors, IL-6 AUCg as dependent variable, and IL-6 concentration at the time of 

injection as a covariate. To further compare IL-6 responses across temperaments a regression 

analysis was used to compare mean approach latency across the two novel arena tests (or 

latency on either test) and LPS dose (predictor variables) to IL-6 AUCg (dependent variable). In 

the Innate Immune Response Study 2, similar analyses were conducted (excluding dose as a 

variable) to compare IL-6 responses to a mid-LPS dose among temperaments. In both studies, 

several LPS-injected rats had peak IL-6 levels that were very low and comparable to those in 

control (saline-injected) rats (< 200 pg/ml at any time point as compared to a mean peak of 

2925 pg/ml in Study 2). Non-responders were defined as LPS-injected rats that had IL-6 levels 

less than 200 pg/ml at all time points, and these individuals were excluded from analyses (4 
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LPS-injected rats in Study 1 – all in the 5μg/kg and 25μg/kg groups – and 3 rats in Study 2, 2 BI, 

1 NI). In Study 2, corticosterone responses to LPS injections were compared among 

temperaments using similar methods described above for IL-6; a one-factor ANOVA with 

temperament as a factor, corticosterone AUCg as the dependent variable, and concentration at 

the time of LPS injection as a covariate.  We also used a repeated measures ANOVA with 

temperament as factor, corticosterone concentrations at each time point after LPS injection as 

the dependent variable and corticosterone levels at the time of injection as a covariate. Total 

glucocorticoid production was linearly compared to temperament using a correlation analysis 

with mean approach latency across novel arenas and corticosterone AUCg as variables. To 

compare the relative relationship between temperament and glucocorticoid and IL-6 

production following LPS challenge, we used a multiple regression analysis with mean latency 

on both novel arenas and glucocorticoid concentration at the time of LPS injection and during 

the 10 hours after LPS (AUCg) as predictor variables, and IL-6 AUCg as the dependent variable. 

To determine if a specific form of inhibition (i.e. social vs. non-social) was most closely 

associated with immune function, these analyses were repeated with latency on each arena 

separately instead of mean latency across both arenas. 

DTH responses were estimated from relative footpad swelling calculated as the 

difference in cross-section between the saline- and KLH-treated feet.  In DTH Study 1, swelling 

response differences between the IP, SC, and IP+SC initial injection methods were assessed by 

ANOVA. To compare swelling responses among temperaments in DTH Study 2, an ANOVA was 

used with temperament as the fixed effect factor and swelling response as dependent variable. 

Two rats were identified as outliers with footpad swelling difference scores further than two 

standard deviations from the mean; these two males were excluded from analysis (2 NI), 

leaving 9 BI, 6 NI, and 13 Mixed rats. In addition, correlational analyses were conducted to 

compare swelling response to mean latency on the two arenas and to latency on each arena 

separately. For all analyses, dependent variables were inspected for normality and for those 

variables that showed a right skew, natural-log-transformation values were used in statistical 

analyses to meet normal distribution requirements. For clarity, means and SEMs of raw values 

are presented in figures. 
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3. Results 

3.1. Innate Immune Response Results 

3.1.1. Study 1: Dose effects of LPS on IL-6 response. 

 As expected, increasing LPS doses led to increased circulating IL-6 concentrations (Dose: 

F (3,22) = 8.39, p < 0.001; Time: F (4,19) = 305.48, p < 0.0001; Dose x Time: F (12,53) = 5.80, p < 

0.0001; Figure 2). In the control group (0 μg/kg), IL-6 levels did show a mild increase over time, 

likely a response to the injury of the tail clip required for repeat blood collection (F (4,20) = 

24.81, p < 0.0001). There was no significant difference in IL-6 responses between the 5 and 25 

μg/kg doses (F (1,7)=1.35, p = 0.283), and thus some analyses were conducted merging across 

doses. The 125 μg/kg dose created the expected ceiling effect in all animals. 

3.1.2.  Study 1 & 2: Behaviorally-Inhibited (BI) rats have a greater interleukin-6 and 

glucocorticoid response to moderate LPS stimulation than Non-Inhibited (NI) rats. 

In Study 1, at the moderate doses of 5 μg/kg and 25 μg/kg, Behaviorally-Inhibited rats – 

those with the longest approach latencies in the novel arenas – had significantly higher 

circulating IL-6 AUCg values (mean latency across arenas: adjusted R2 = 0.85, n = 9, t = 3.81, p = 

0.0089). Latencies within each arena were less predictive of individual rat IL-6 AUCg after LPS, 

with object approach latencies more closely related to IL-6 responses than social approach 

latencies (object: adjusted R2 = 0.73, n = 9, t = 2.36, p = 0.056; social:  adjusted R2 = 0.58, n = 9, t 

= 1.21, p = 0.275).  At the higher LPS dose (125 μg/kg), there was no relationship between 

approach latencies and IL-6 responses to LPS (R2 = 0.09, n = 7, t = -0.71, p = 0.509). 

Study 2 confirmed this accentuated IL-6 response in Behaviorally-Inhibited rats. Basal 

circulating IL-6 concentrations at the time of LPS injection were no different among 

temperaments (F (2,24) = 0.361, p = .701, ƞ2 = 0.029; Figure 3a). However, in response to the 

LPS challenge, BI rats had peak and AUCg circulating IL-6 levels that were 2-3 times greater than 

NI and Mixed rats (IL-6 AUCg ANOVA: F (2,23) = 5.044, p < 0.05, ƞ2 = 0.305; repeated measures 

ANOVA:  F (2,23) = 3.802, p < .05, ƞ2 = 0.248; Figure 3a). Tukey’s HSD tests indicate that the BI 
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rats were significantly different from both the NI and Mixed groups (ps = 0.012 and 0.020). 

There was a significant positive correlation between mean latency on the novelty arenas and IL-

6 production (AUCg) in response to the moderate LPS dose (r = 0.453, n = 27, p = 0.009). 

Latency on the novel social arena was more closely related to IL-6 production than latency on 

the novel object arena (r = 0.404, n = 27, p = 0.018 vs. r = 0.225, n = 27, p = 0.129). 

 There was also a trend toward temperament-specific differences in glucocorticoid 

production in response to the moderate LPS challenge. At the time of LPS challenge, basal 

corticosterone levels did not differ among temperament groups (F (2,23) = 0.868, p = 0.434, ƞ2 = 

0.070; Figure 3b), but there was a significant temperament difference in corticosterone 

secretion after LPS injection. BI rats had significantly greater corticosterone AUCg compared to 

Mixed rats (corticosterone AUCg ANOVA: F (2,22) = 4.755, p = 0.019, ƞ2 = 0.302; repeated 

measures ANOVA: F (2,22) = 4.201, p = 0.028, ƞ2 = 0.276; Figure 3b). In the case of 

glucocorticoid production, there were no significant linear relationships between approach 

latency in the novel arenas and total corticosterone production (AUCg) after LPS stimulation 

(mean latency in both arenas: r = 0.163, n = 27, p = 0.208; novel social: r = 0.049, n = 27, p = 

0.403; novel object: r = 0.172, n = 27, p = 0.195). Variance in IL-6 response to LPS was more 

closely related to behavioral measures of temperament (mean latency to approach) than to 

basal corticosterone level at the time of LPS challenge or to corticosterone responses (AUCg) to 

the challenge (regression statistics for mean approach latency, basal corticosterone, and 

corticosterone AUCg to LPS: ß = 0.436, t = 2.377, p = 0.026; ß = -0.233, t = 1.052, p = 0.304, ß = 

0.202, t = 0.903, p = 0.376). 

 

3.2. Delayed-Type Hypersensitivity Results 

3.2.1 Study 1: Temporal dynamic of footpad swelling after KLH re-injection did not differ 

depending on location of initial injection. 

In Study 1, on the day after KLH re-exposure, the KLH-treated footpad was thicker than 

the saline-treated footpad (paired t (8) = 6.502, p < 0.0001; KLH vs. saline mean ± SD: 5.032 ± 

0.227 vs. 4.658 ± 0.166 mm).  This difference in swelling between the right (KLH-treated) and left 
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(saline-treated) footpads did not differ depending on the location of the initial KLH injection 

(intraperitoneal, caudal fold, or both; F (2,21) = 0.513, p = 0.606) but did differ according to 

days following re-exposure (F (2, 22) = 7.453; p = 0.003).  Footpad swelling was greatest 1 day 

after re-exposure, intermediate 2 days after re-exposure, and resolved by day 3 (mean ± SD on 

Days 1, 2, 3:  0.375 ± 0.172, 0.192 ± 0.221, -0.008 ± 0.222 mm).  Based on these results, analyses 

of temperament-related swelling were conducted with footpad swelling measured on Day 1 

after KLH re-exposure.   

3.2.2. Study 1 & 2: Behaviorally-Inhibited (BI) rats had a dampened (or slower) DTH 

response to KLH than Non-Inhibited (NI) rats. 

 In Study 1, rats that were fast to approach novelty (NI) had more footpad swelling one 

day after KLH re-exposure than rats that were slower to approach novelty (BI) (r = -0.65, n = 10, 

p = 0.041). Two days after KLH re-exposure, there was a trend for greater KLH-induced footpad 

swelling in BI vs. NI males (r = 0.67, n = 8, p = 0.069), suggesting a possible delayed DTH 

response in BI. Study 2 outcomes were similar; NI males had a heightened swelling response 

one day after KLH footpad re-exposure compared to Mixed- and BI males (F (2,25) = 3.53, p = 

0.045; Figure 4). There was a significant negative correlation between mean approach latencies 

on the two novelty arenas and footpad swelling responses (r = -0.534, n = 28, p = 0.003). Again, 

like for the IL-6 response to LPS, latency on the novel social arena was more closely related to 

footpad swelling than latency on the novel object arena (r = -0.47, n = 28, p = 0.012 vs. r = -0.33, 

n = 28, p = 0.083).  

 

4. Discussion 

In the current study, we found that a behavioral trait indicative of heightened fear of 

novelty and associated with moderate, chronic glucocorticoid overproduction (i.e. Behavioral 

Inhibition), was also associated with a specific immune response profile. Male rats that showed 

behavior inhibition (BI) had an elevated innate inflammatory response with concurrent 

elevated circulating glucocorticoids, and dampened Th1-mediated delayed-type 

hypersensitivity response compared to non-inhibited rats. These results suggest that behavioral 
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inhibition involves innate cell glucocorticoid resistance and a skew toward less Th1-mediated 

immune responses. These results indicate that immune function can vary in a systematic way 

relative to behavioral traits even in the absence of differential antigen exposure among 

behavioral phenotypes. 

The results of the current study are similar to those documented in some prior studies 

with mice, primates, and cattle (Azpiroz et al., 2008; Capitanio et al., 2011; Hulbert et al., 2011; 

Kirsten et al., 2018) and differ from other studies that have shown increased innate immunity in 

free-ranging avian risk-takers and heightened DTH responses in socially-inhibited human adults 

(e.g. Cole et al., 1999; Zylberberg et al., 2014). Different findings across studies may result from 

different behavioral categorization methods, species differences in evolutionary histories, sex 

differences, disease history and genetic predispositions, and/or different environmental 

conditions across studies. For example, laboratory-bred, farm-bred, and wild-caught animals all 

have vastly different breeding histories, life experiences, and pathogen exposures. Innate 

immune responses are associated with significant caloric cost, and for wild-living animals 

sickness behavior may lead to lost opportunities to forage, socialize, and mate (Rauw, 2012; 

McDade, 2005; Lochmiller & Deerenberg, 2000) and may cause tissue damage (i.e. 

immunopathology; Medzhitov et al., 2012; Peiris et al., 2010; La Gruta et al., 2007). Thus, innate 

immunity as it relates to temperament may differ between free-ranging and lab/farm-raised 

animals. Another source of variance among studies may result from sex of the study animals. 

Behavioral patterns and basal and stimulated glucocorticoid circulation and immune function is 

quite different between males and females and this difference must be taken into account 

when studying the relationship between behavioral and immune phenotypes (Cavigelli et al. 

2008; Immonen et al., 2018; Tarka et al., 2018). For example, in female humans social-inhibition 

was associated with elevated DTH responses (Cole et al., 1999) whereas the current study with 

male rats showed the opposite result. In the current study, we focused on male rats because 

temperament has been most closely associated with life span in males of this species (Cavigelli 

& McClintock 2003; Cavigelli et al., 2009). Further work is required to determine if immune 

function is systematically associated with behavioral phenotypes, and if so how these 
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systematic immune differences affect health and fitness outcomes, in both free-ranging and 

domesticated animals, males and females. 

Prior work has demonstrated effects of chronic stress and glucocorticoid production on 

a variety of immune functions, including innate immunity and delayed-type hypersensitivity 

responses. The present study tested whether a simple behavioral trait associated with 

glucocorticoid production and life span – i.e. behavioral inhibition – is associated with a specific 

immune response profile under low stress conditions. BI rats had heightened IL-6 and 

glucocorticoid responses to a low/moderate dose of lipopolysaccharide, and a dampened 

swelling response to keyhole limpet hemocyanin re-exposure compared to NI rats. Although 

behavioral measures of temperament were linearly-related to rapid IL-6 responses to LPS, 

glucocorticoid production was not a strong linear predictor of IL-6 response, suggesting that 

behavior-associated immune alterations are not solely mediated by glucocorticoid profiles (e.g. 

Sloan et al., 2008; Capitanio et al., 2011). However, the heightened IL-6 and corticosterone 

response to LPS in BI rats suggests that this behavioral trait may be associated with 

glucocorticoid resistance. Long-term exposure to elevated glucocorticoids can produce 

tolerance in specific types of immune cells, which trigger runaway inflammation and TH2 

responses (i.e. macrophages, via innate lymphoid cells) while other cell types remain inhibited 

(Schmidt et al., 2010; Banuelos & Lu, 2016). Chronically-elevated corticosterone levels in 

inhibited individuals may inhibit TH1 adaptive immune responses but allow for elevated innate 

inflammatory and TH2 responses. This specific pathway has yet to be tested.  

It has been hypothesized that TH2 polarization may be adaptive for coping with acute 

stressors - a strong TH2 response could help moderate an elevated TH1 response initiated to 

cope with skin wounding and infection (Calcagni & Elenkov, 2006; Munck & Náray-Fejes-Tóth, 

1994; Dhabhar & McEwen, 1997; Gause et al., 2013). However, in the face of chronic stress or 

chronically-elevated glucocorticoid production, and in the absence of wounds, this regulatory 

response may lead to long-term TH2 activation – a risk-factor for allergic and atopic responses 

(Elenkov & Chrousos, 1999). Although not specifically tested in the current study, the 

dampened TH1-mediated response in behaviorally-inhibited males may be linked to elevated 

TH2-mediated responses – a strong anti-parasite defense in wild-living animals, but a hallmark 
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of allergies/atopic disorders/asthma in clean, protected lab-living animals and humans (see 

Maggi, 1998).  

Future mechanisms to explore include the functioning of regulatory T cell (Treg). Treg cell 

activity reduces allergic airway inflammation by suppressing TH2 cell differentiation (Duan et al., 

2011) or modulating the activity of TH1 and TH2 cells (Akdis et al., 2004). In humans with asthma 

and in allergic asthma mouse models, Treg cell capacity to influence monocyte activity and IL-6 

production is altered (Lee et al., 2007; Matsumoto et al., 2009; Hamzaoui et al., 2010). Inhibited 

recruitment of Treg cells in response to allergen exposure can result in excessive TH2 responses 

in sensitized asthmatics (Wang et al., 2009). In addition, Treg cells are inhibited by TH17 cells, 

which are resistant to glucocorticoid suppression (Schmidt et al., 2010; Banuelos & Lu, 2016). 

Thus, chronic glucocorticoid production may have minimal impact on these processes. Future 

work on temperament-associated immune biases might focus on Treg cell function in fearful 

humans as a possible mechanism underlying risk for allergy-related health outcomes. 

The results of the current study provide additional support that rat BI may be a viable 

model of human behavioral inhibition. Prior studies have shown that BI male rats have a 

shortened lifespan and elevated basal and stress-reactive levels of glucocorticoids (Cavigelli & 

McClintock, 2003; Cavigelli et al. 2007; 2009), and the current study indicates a pro-

inflammatory innate immune response with dampened delayed-type hypersensitivity in the BI 

vs. NI rats. Chronic glucocorticoid overexposure, such as that associated with BI, may lead to 

these specific immune alterations. In classical macrophage activation, macrophages trigger a 

TH1 inflammatory response (Mosser and Edwards, 2008). Glucocorticoid administration can 

inhibit this adaptive TH1 response, but macrophages quickly develop glucocorticoid resistance, 

leading to enhanced innate immune activity and thus a dysregulation of immune balance (Stark 

et al., 2001; van de Garde et al., 2014). This dysregulation occurs in disorders like autoimmune 

diseases, chronic infections, major depression, and atherosclerosis – many of the health 

conditions that have been associated with BI (Calcagni & Elenkov, 2006). Additionally, a major 

function of the immune system is not only to defend against non-self antigens, but also against 

damaged self-cells via the DNA damage response and repair (DDR/R) pathway. Immune 

dysregulation toward TH2 inhibits the DDR/R cascade, allowing cancerous cells to proliferate 
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unchecked. (Pateras et al., 2015). An animal model of fearful or BI temperament that involves 

similar underlying physiological biases as those seen in humans provides a system in which to 

experimentally-test causal relationships among response biases and to test how environmental 

and developmental conditions may affect these relationships.  

An important aspect of this model is that latency to approach a novel conspecific (social 

partner) was more predictive of immune dysregulation than latency to approach a novel object. 

Social inhibition, rather than inhibition in non-social contexts, may be a more appropriate 

model of temperament-specific immune dysfunction. Social stress has been shown to enhance 

the TH2 response to allergen and reduce glucocorticoid sensitivity in many studies (Bailey et al., 

2009; Li et al., 2013; reviewed in Haczku & Panettieri, 2010). Zebrafish showing low social 

exploration had reduced expression of IFN-γ (Kirsten et al., 2018). Mice deficient in adaptive 

immunity (SCID mice) have been shown in a recent study to exhibit defects in social behavior 

that can be reversed by IFN-γ, a cytokine critical for TH1 development (Filiano et al., 2016). 

Recent literature from humans highlights the impact of loneliness and social isolation on 

negative health outcomes, including mortality (Steptoe et al., 2013; Ellwardt et al., 2015; 

reviewed in Holt-Lunstad et al., 2015). And early work with humans indicated a positive 

association between social inhibition and DTH responses during social engagement in a 

population of adults with autoimmune disorders (Cole et al. 1999). Thus, an animal model of 

social inhibition may provide the best system in which to study fearful temperament-specific 

physiology and health. 

Further work is required to identify mechanisms by which temperament-specific 

immune alterations occur.  Future studies should include measures of central nervous system 

function, and experimental manipulation of glucocorticoid activity to determine the relative 

role of these mechanisms in temperament-related immune response biases. An important 

caveat for this future work is that experimentally-manipulated exogenous glucocorticoid 

exposure should mimic glucocorticoid profiles seen in distinct temperaments, with the 

recognition that mimicking endogenous glucocorticoid profiles can be difficult to do with 

exogenous glucocorticoid application (Pruett et al. 1999; Fleshner et al., 2001). Specific aspects 

of central nervous system alterations include serotonergic function (Takano et al., 2007; Donner 
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et al., 2016), hippocampal and prefrontal cortex glucocorticoid signaling (Cerqueira et al., 2005; 

Patel et al., 2008; Sorrells et al., 2014), the kynurenine pathway (Brooks et al., 2016), and pro-

inflammatory cytokine regulation throughout the brain (Capitanio et al., 2008; reviewed in 

Ménard et al., 2016). Several cytokines, particularly IL-1 and TNFα, can affect central nervous 

system functioning (reviewed in Rochfort & Cummins, 2015). In turn, central nervous system 

processes can affect immune function by triggering secretion of immunomodulating hormones 

or autonomic stimulation of lymph nodes, all of which may be associated with an inhibited 

temperament (e.g. Sloan et al., 2008). Further research on mechanisms could provide insight 

into targeted interventions in order to improve both psychological and physical well-being in 

behaviorally-inhibited people. 
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Figure Legends 

Figure1.  Overhead view of the novel object (a) and novel social (b) arenas. Test rat is placed in 

a clean ceramic bowl and lowered into the corner of the arena and allowed to explore 

freely for 5 minutes. 

Figure 2.  Male Sprague-Dawley rat circulating interleukin-6 (IL-6) concentration at baseline and 

in response (at 2, 4, 6, 10 hr) to 4 different doses of intraperitoneal lipopolysaccharide 

(LPS; 0, 5, 25, 125 μg/kg; n = 6-7 rats in each dosage group respectively). Circles indicate 

means, error bars indicate S.E.M. 

Figure 3a,b.  (a) Mean circulating interleukin-6 (IL-6) concentration at baseline and after 

intraperitoneal lipopolysaccharide (LPS) injection for Behaviorally-Inhibited (BI), Non-

Inhibited (NI), and Mixed-Behavior male rats (n = 4, 6, 17 respectively). Left-hand figure 

depicts mean IL-6 concentration at each sampling time, right-hand figure depicts the 

total IL-6 response to LPS represented as area-under-the-curve relative to ground 

(AUCg) during the 10 hrs following LPS injection. Error bars indicate S.E.M. (b) Mean 

circulating corticosterone concentration at baseline and after intraperitoneal 

lipopolysaccharide (LPS) injection for BI, NI, and Mixed male rats (n = 4, 6, 17 

respectively; same rats as those whose data are depicted in Figure 3a). Left-hand figure 

depicts mean corticosterone concentration at each sampling time, right-hand figure 

depicts the total corticosterone response to LPS represented as area-under-the-curve 

relative to ground (AUCg) during the 10 hrs following LPS injection. Error bars indicate 

S.E.M. For both AUCg figures, asterisk indicates significant differences (p<.05) between 

groups in post-hoc comparisons. 

Figure 4.  Delayed-type hypersensitivity response, as measured by relative footpad swelling in 

response to keyhole limpet hemocyanin (KLH) re-exposure in BI, NI, Mixed male rats (n = 

9, 6, 13 respectively). Relative swelling represents the difference in footpad thickness 

between the saline-exposed footpad and the KLH re-exposed footpad. Error bars 

indicate S.E.M. Asterisk indicates significant difference (p<.05) between groups in post-

hoc comparisons. 
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