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Critical media, information, and 
digital literacy:  
Increasing understanding of 
Machine Learning through an 
interdisciplinary undergraduate 
course 

Barbara R. Burke and Elena Machkasova,  
University of Minnesota, Morris  

Abstract 

Widespread use of Artificial Intelligence in all areas of today’s society creates a 
unique problem: algorithms used in decision-making are generally not 
understandable to those without a background in data science. Thus, those who 
use out-of-the-box Machine Learning (ML) approaches in their work and those 
affected by these approaches are often not in a position to analyse their outcomes 
and applicability. Our paper describes and evaluates our undergraduate course at 
the University of Minnesota Morris, which fosters understanding of the main ideas 
behind ML. With Communication, Media & Rhetoric and Computer Science faculty 
expertise, students from a variety of majors, most with no prior background in 
data science or computing, reviewed the scope of applicability of algorithms and 
became aware of possible biases, ‘politics’ and pitfalls. After discussing articles on 
societal attitudes towards technology, explaining key concepts behind ML 
algorithms (training and dependence on data), and constructing a decision tree as 
an example of an algorithm, we attempted to develop guidelines for ‘best 
practices’ for use of algorithms. Students presented a ‘case analysis’ capstone 
paper on an application of machine learning in society. Paper topics included: use 
of algorithms by child protection services, ‘deepfake’ videos, genetic testing. The 
level of papers was indicative of students’ strong interest in the subject and their 
ability to understand key terms and ideas behind algorithms, societal perception 
and misconceptions of use of algorithms, and their ability to identify good and 
problematic practices in use of algorithms. 
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Introduction 

As Machine Learning (ML) spreads to more and more aspects of society, be it 

financial, medical, educational, artistic, or daily minutiae, it is essential that society 

is educated about its key foundations, capabilities, limitations, and effects. Given 

a large number of misconceptions about Machine Learning and artificial 

intelligence, decision-makers may put unwarranted trust or distrust into Machine 

Learning methods, which may have drastic unanticipated consequences for the 

society. Not understanding the role training data plays in an algorithm’s behaviour 

may lead to perpetuating problematic practices and biases via an algorithm. It is 

crucial that educators take on the challenge of teaching machine learning 

concepts and implications to a wide range of learners, not just to statisticians, 

computer scientists, or data scientists. Such teaching would require explaining the 

key ideas of machine learning, exploring perceptions of algorithms in society, 

reasoning about implications of their use, and being able to form an informed 

opinion about the use of machine learning in various areas of society. These 

conversations must span multiple disciplines, and it is essential that the terms 

employed in such discourse are understood the same way by all participants. 

While the developers of machine learning methods usually have graduate 

degrees, machine learning is involved in such a wide range of areas that one 

cannot limit education about the basics of machine learning to graduate programs. 

With this in mind, the two authors of this paper have developed and co-taught an 

interdisciplinary undergraduate course, ‘Machine Learning in Society: Who trains 

whom?’ that was offered in the curriculum of the selective, Honors program (like 

an Honors College) at the University of Minnesota Morris. The two faculty brought 

in expertise in Communication, Media, and Rhetoric (CMR) (Burke) and Computer 

Science (Machkasova). There were eleven students in the class, with majors 

including Art History, Biology, CMR, Computer Science, Elementary Education 

(Primary School Teacher training), English, History, Mathematics, Medieval 

Studies, Political Science, and Statistics. Some students double-majored in 

different areas. The students were juniors (3rd year) and seniors (4th year).   

Relevant background 
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Studies and arguments regarding the uses and misuses of technologies of 

communication have simplistically been sorted into works which are 

technologically wary/ distrustful (Czitrom, 1983; Postman, 1992) and those which 

are technologically enthusiastic (e.g., Walther, 1996).  Within the latter category 

expressions of ‘revolutions’ and ‘social consequences’ embrace change as 

inevitable (Innis, 1951; McLuhan, 1964) and the necessities of a ‘marketplace’ 

which responds to a social demand/ push approach to new products and 

processes (e.g., authors in Neuman, 2010, who assert that understanding older 

forms of media technology development and adoption can guide us in 

understanding current and future patterns).  With celebrations of progress and 

suggestions of kinds of improvements for society, communications and computer 

technologies have been championed as tools for increasing equality (Dahlberg, 

2001), scrutinizing the processes of modern democracy (Mumford, 1970; Castells, 

1996, Aikens, 1997), and enhancing engagement with communities (Wellman, 

1984; Baym, 1995; Kavanaugh, et. al, 2005). 

Computer-mediated decision-making, as shown within popular media, is also 

often offered as an improvement on human practices, for machines are generally 

viewed as neutral, logical and not swayed by emotions (Mackenzie, 2006).  

Examples include books, television programmes, films, web-series and others that 

readily show ‘intelligent robots’ as emerging at the cusp of tomorrow (Sawyer, 

2012).  Nonetheless, we suggest and thus teach in our course, that understanding 

the current reality of AI, machine learning and algorithms (as applied for social 

practices) requires sceptical and nuanced understandings that distinguish 

between the potentially possible, and the realized technologies of the present era.  

Additionally, critical media literacy – the place where communication studies, 

media literacy, digital literacy and information literacy intersect – is the location 

for which we assert scholars and students may be particularly able to explore what 

machine learning can and cannot be.  As noted by the 2019 conference on 

‘Emerging technologies, social media & the politics of the algorithm’ at TU Dublin, 

now is a good time to consider ways we can deliberately and strategically have 

these important concerns addressed by scholars and students. 

Below, in describing our work teaching undergraduate students about the 

applications and consequences of Machine Learning, we explain: our objectives; 

course format, activities and assignments; selected course materials and 
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responses; and significant assignments. We then offer our conclusions and ideas 

for future work.   

Course objectives  

The goal of the interdisciplinary course was for the students to learn to do the 

following: 

• Question public attitudes about computing and new technologies. 
Specifically, students were introduced to ideas of a techno-optimistic view 
and a techno-sceptical view.  

• Challenge the assumption that algorithms are fair and unbiased.  

• Understand key machine learning mechanisms and the role of training data 
in determining algorithms’ behaviour.  

• Expose how data rooted in current social practices may introduce (often 
unintended) biases into machine learning, which perpetuates these biases in 
society.  

Course format 

The course was scheduled to run for 15 weeks, one class meeting (of 100 minutes) 

per week. Because of two weather-related cancellations, it actually had 13 class 

meetings. In addition to the class meetings, the course utilized an online course 

management system (Canvas) that was used for posting readings, submission of 

assignments, and some amount of discussion (mostly, students submitting 

additional resources that they thought were relevant).  

Students were given weekly assignments which included, reading: some 

introductions to key terminology in communication studies; popular news and 

web articles on various uses of machine learning; and selected chapters from 

Cathy O’Neil’s book Weapons of Math Destruction (O'Neil, 2016).  

Classroom activities included:  

• Lecture-like presentations by instructors based on the readings and students’ 
questions. For instance, the students asked us to provide more information 
about the 2008 housing crisis mentioned in one of the readings, or 
background on neural networks.  

• discussions of the readings by students, sometimes first as small group 
discussions.  

• group activities, such as a hands-on exercise on a mathematical model called 
decision trees, and a brainstorming of ideas for an unbiased hiring algorithm 
for a company.  
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• Students’ presentations. 
 

These assignments and their takeaways are detailed later in the paper.  

The writing assignments included: 

• Weekly feedback on assigned readings. We asked students for a short (four 
to six sentences) feedback in which they addressed the following:  

• what were the most important things they’ve learned from the readings;  

• what was the most surprising or unfamiliar part of the readings;  

• the students were required to ask at least two questions about the 
readings; 

• optionally, students could add any other feedback they felt relevant. 
 

• Essay-style written assignments. The three assignments in this category 
stressed critical thinking and increased the analysis component as the 
semester progressed: 

• Based on an article about using ML in ‘Precision agriculture’ 
(PrecisionAg.com, 2019)  the students were asked to answer questions 
about key ML terminology (such as: ‘Would you consider the algorithm to 
be inference or prediction?’), understanding data used in the algorithms, 
identifying the key stakeholders of the algorithms in question, and 
identifying its potential benefits and downsides. The purpose of the 
assignment is to assess students’ ability to identify technical and societal 
elements of an algorithm. 

• The students were asked to analyse an article about an application of ML 
(they were given a choice among several articles). While the questions for 
this assignment addressed the key elements of algorithms, such as 
training data selection and potential bias, as well as its key stakeholders, 
the students were also asked to discuss how the algorithm fits into the 
democratic society, and additionally to find potential gaps in the article’s 
description of the algorithm that make it difficult to evaluate it fully. 

• The final assignment in this category asked students to discuss what a 
person whose area of expertise is not data science can do to increase or 
support justice in a modern society that uses AI.  

 

• Final, capstone papers in which students analysed an application of ML to a 
big-data problem in a society. The students also presented their chosen 
topics in class to get feedback before their papers were completed. A 
description and examples of final papers and presentations are detailed later 
in the paper.   
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Course materials and important readings  

Presentation of media and communication studies theories 
The course began with an introduction to the range and variety of perspectives 

related to media technology adoption, and subsequent social responses to new 

ways of communicating.  The students were assigned an assortment of excerpted 

book chapters and essays from our ‘Mass Media and Society’ curriculum and 

listened to a supplemental mini-lecture with core definitions, and the names of 

some key scholars.  We had general discussions about technology, with critical 

arguments about why scholars do not see systems and technologies as neutral.  

Students then investigated social assumptions about ‘progress’ (as inevitable 

and/or beneficial, or problematic for various people and groups) and the 

assertions of media theorists who embraced or rejected technological 

determinism. Included in the class lessons were some interpretative, historical 

arguments about early uses of mass media, and explanations of ways we could, 

and could not, use the theories that have been applied to telegraphy, radio and 

broadcast television studies to digital media and systems, and we thus established 

a critical and grounded perspective to explicate the ways the course’s digital and 

information literacy was connected to, but not synonymous with the basic media 

literacy skills the students had previously known.   

Presentation of technical ideas 
Presenting technical ideas behind machine learning to an audience with varying 

levels of mathematical background requires a careful selection of resources, 

examples, and the terminology used. Fortunately, many experts have provided a 

light-weight introduction to their areas in the form of blog posts or public articles. 

The process of using these resources worked as follows: 

• Students were provided with these materials ahead of the class meeting.  

• A day or two before the class meeting students would submit their weekly 
reflections that included their key takeaways from the materials as well as 
their questions. 

• The instructors used these write-ups to put together an in-class presentation 
clarifying the confusing points. The presentation would mostly use a 
whiteboard rather than power-point slides, to make it more interactive and 
flexible, allowing the instructors to adjust based on the students’ real-time 
questions.  
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To give students a first-hand experience with the approaches used in ML an in-

class activity – a walk-through a decision tree algorithm – was used. Since it was 

quite a significant in-class time investment, only one such activity was used. We 

discuss it in more detail at the end of this section. 

Below are some of the topics and key resources that were covered as a part of 

technical introduction to ML: 

• ‘A Non-Technical Introduction to Machine Learning’ by Noah Yonack 
https://blog.safegraph.com/a-non-technical-introduction-to-machine-
learning-b49fce202ae8 This resource introduces terms, such as machine 
learning, artificial intelligence, model, algorithm, training data, testing data, 
feature, supervised vs unsupervised learning, and others. It also describes the 
process of machine learning without going into mathematical details.  

• ‘Introduction to Unsupervised Learning’ by a group ‘Algorithmia’ 
https://algorithmia.com/blog/introduction-to-unsupervised-learning 
introduces  the ideas behind the main methods of unsupervised learning, 
such as clustering and data compression. The students were shown an 
example of K-means clustering.   

• ‘Neural networks’ by Chris Woodford 
https://www.explainthatstuff.com/introduction-to-neural-networks.html 
discusses the basics of neural networks. To supplement this resource, the 
students were walked through an illustration of backpropagation: updates of 
weights that happen during a network training process.  

• ‘Introduction to Convolutional Neural Networks’ by a company Rubik’s cube 
https://rubikscode.net/2018/02/26/introduction-to-convolutional-neural-
networks illustrates how the structure of a convolutional neural network is 
modeled after the process of human vision. It demonstrates interactions 
between network layers and helps understand how numeric encoding of data 
(in this case an image) can be used to recognize its features.  

• ‘What Is Natural Language Processing And What Is It Used For?’ by Terence 
Mills https://www.forbes.com/sites/forbestechcouncil/2018/07/02/what-is-
natural-language-processing-and-what-is-it-used-for/#cb5dfc35d71f  
introduces students to the key approaches behind natural language 
processing, including the Hidden Markov Models (without going into the 
mathematical details) and semantic analysis. The role of context is 
emphasised, and the idea that two words are related in meaning if they often 
appear in the same context is illustrated with examples.  

• Weapons of Math Destruction by Cathy O’Neil. The book provides an 
excellent discussion of issues with using ML in society, such as codifying and 
perpetuating biases in decision making. Four weeks of the course were 
devoted to discussing selected chapters of the book. Students strongly 

https://blog.safegraph.com/a-non-technical-introduction-to-machine-learning-b49fce202ae8
https://blog.safegraph.com/a-non-technical-introduction-to-machine-learning-b49fce202ae8
https://algorithmia.com/blog/introduction-to-unsupervised-learning
https://www.explainthatstuff.com/introduction-to-neural-networks.html
https://rubikscode.net/2018/02/26/introduction-to-convolutional-neural-networks/
https://rubikscode.net/2018/02/26/introduction-to-convolutional-neural-networks/
https://www.forbes.com/sites/forbestechcouncil/2018/07/02/what-is-natural-language-processing-and-what-is-it-used-for/#cb5dfc35d71f
https://www.forbes.com/sites/forbestechcouncil/2018/07/02/what-is-natural-language-processing-and-what-is-it-used-for/#cb5dfc35d71f
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related to many examples of social issues affected by ML, including criminal 
justice, effects of college rankings on college affordability, health insurance 
price discrimination, hiring discrimination, and targeted social media 
campaigns. By the time the students were reading the book they were 
already familiar with the foundational ideas behind machine learning, which 
made it easier for them to understand how the choice of training data and 
the criteria for the algorithm's ‘success’ used in training may be a source of 
bias in the working of the algorithms. The students' familiarity with societal 
attitudes about technology (from the readings in Communication theory) 
helped them understand how algorithms' biases may easily remain unnoticed 
and unchallenged.  

 

Technical material was challenging to students, especially the ones with less 

mathematical background. However, such information is necessary to make sure 

that students have the ability to ‘un-magic’ ML applications, such as the ones 

mentioned in news articles.  

To illustrate how students dealt with technical material, we include a few 

questions and comments from their weekly written feedback. This set is for the 

reading materials on neural networks and convolutional neural networks. This list 

illustrates the most common themes in the students' write-ups. 

1. I did not know that networks as advanced as neural networks existed. I also 
was unaware that brains and computers ‘think’ in completely different ways, 
which is a difference neural networks try to bridge (Art History & CMR 
major). 

2. The reading mentions that no one has attempted to build a neural network in 
the same way a brain is built with parallel structures, and I'm curious as to 
why (Biology major). 

3. [H]ow does the adjusting of weights during backpropagation work? (Biology 
major). 

4. Why are multiple non-linearity layers (or ReLU layers) necessary in 
convolutional neural networks?  (English major). 

5. I was surprised to understand that the computer simply shaves off 
unnecessary detail and emphasizes key parts of the image until a neural 
network can identify it (Math major). 

6. The article mentions that deep learning systems need feedback, and 
therefore this type of network is supervised machine learning. I'm curious, 
would it be possible to create a type of neural network that worked with 
unsupervised machine learning? (Statistics major). A related question was 
asked by a Biology major: How does backpropagation work in cases where 
you don't know what the final output is supposed to be?  
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7. Can feedback from a neural network trick a human into believing that the 
computer can feel emotions and make humanlike decisions? (Elementary 
Education major). 

 

Now we illustrate how this feedback would inform our in-class discussions and 

general class progress. Comment 1 and similar comments indicate that the 

students understood the part of the article that discusses the similarities and 

differences between the computer-based ‘learning’ and the brain quite well, and 

learned something new from it (even Biology majors mentioned things that they 

didn’t know about how the brain functioned). The follow-up question 2 prompted 

an interesting discussion of how the goal of ML (and computing in general) is quite 

different from actually simulating a human brain, and also of the research focus 

on creating usable systems for concrete tasks, rather than explore a more 

challenging field of creating a ‘thinking’ device.  

Questions 3 and 4 prompted a detailed whiteboard example of updating weights 

in a very small neural network with mock-up numbers as weights (i.e. without the 

actual weight computation). The main point of the example was to show how, 

starting with random weights, we can use backpropagation to increase or 

decrease weights where the final label of the outcome is incorrect. For the next 

offering of the course, it may be a good idea to find an interactive demo of this 

process. The example also showed how a ReLU allows one to model a threshold 

so that all values below it is ignored. This motivates the use of non-linearity and 

allows one to connect question 4 to what is essentially an answer to it, in the 

comment 5 above (using one student’s comment to answer another student’s 

question is a great motivational tool).   

Question/comment 6 is another place to connect two seemingly different items 

of feedback: one question is technical, the other one gives the intuition behind it. 

Explaining how the two are similar is a fruitful teaching moment. The answer to 

this question also illuminates an important idea: that unsupervised ML can be 

turned into supervised by using one of the data fields (or a combination of several) 

as a ‘label’. However, without selecting such a label neural networks are not 

helpful for unsupervised learning since they look for complex patterns in data, 

whereas unsupervised methods group data, and there are just too many complex 

ways in which data could be grouped.    
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Finally, question 7 opens a door to discussion of the Turing test, an 

anthropocentric view of computers, and/or whether human needs for interaction 

can be satisfied by a computer – all of which is within the scope of the course since 

we are looking at machine learning in society, and social and psychological aspects 

of interacting with a computer are an important aspect of this topic.   

The above example illustrates our weekly preparation process after going over 

students’ write-ups the day before a class meeting.  The process allowed us to 

shape in-class discussions according to the students’ needs and interests. We feel 

that the requirement to write weekly feedback engages students more with the 

material. We should point out two challenges, though:   

• Not all students were submitting their feedback on all readings in a timely 
fashion. There was a small grade penalty for late work (with the rationale 
that late feedback is better than no feedback at all, since the students still 
have a motivation to complete the readings). Given that this group of 
students, being in the Honors program, was probably more motivated than 
most other students, the lack of responses (especially from students 
struggling with the readings) may become a problem if the course were to be 
expanded to a regular curriculum offering.  

• There is not much time between getting students’ feedback and the class, so 
instructors need to be committed to allocating a significant amount of time 
the day before the class for preparing. Sometimes unexpected questions or 
comments arise, and this makes the preparation challenging (although quite 
rewarding since it allows for a dynamic ‘dialogue’ with students). We also 
expect that if the class is taught several times, the element of surprise 
diminishes, and instructors accumulate a collection of examples and 
resources that can be used in class in response to students’ confusions or 
thoughts.   

Significant course activities and outcomes  

Decision tree exercise 
We felt that students' understanding of the mechanical nature of ML algorithms 

would be more solid if they had an opportunity to ‘walk through’ the workings of 

an algorithm. We chose a simple instance of the decision tree algorithm (Shalev-

Shwartz, et al., 2014) for this activity. The students were given a small (35 records) 

fragment of a dataset of films from a public datasets repository 

(https://perso.telecom-paristech.fr/eagan/class/igr204/datasets) that was 

simplified to include only three variables: 

https://perso.telecom-paristech.fr/eagan/class/igr204/datasets
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1. Film length in minutes  
2. Year released  
3. Popularity, as a binary: popular/unpopular. In the original dataset there was 

a numeric score between 0 and 100; it was not specified how it was 
determined. In order to apply the decision tree procedure, we introduced a 
cut-off point, arbitrarily set to 50, to use a binary classification. 

 

The table below shows three data points. It gives the popularity score, as well as 

the binary “popular/unpopular” classification.  

Year Length (min) Popularity Name 

1990 111 Popular (68) Tie me up! Tie me down! 

1983 104 Popular (79) Dead zone 

1979 122 Unpopular (6) Cuba 

 

The names of the films were given just to be able to identify data points. All other 

fields in the original dataset were omitted.  

The decision tree algorithm partitions the problem space (in this case, a two-

dimensional space of length and year) into rectangles, each rectangle containing 

only one class of points (all popular or all unpopular). If it cannot arrive at a perfect 

separation within a certain number of steps, it produces rectangles in which most 

points belong to the same class. These rectangles are then used to predict whether 

a new point, given its coordinates in the problem space (in this case its length and 

year) would be popular or unpopular, based on the rectangle in which it is 

positioned. 

The students were asked to create the rectangular partitions based on the given 

data and then try to predict the popularity of five films that were not a part of the 

training data – the data they used to create the partitions. The five test films were 

given to them only after they settled on the partitions. While the decision tree 

algorithm is deterministic if computations for optimal partitions are performed 

strictly, the students were working on paper and thus were given some leeway in 

approximation and guessing, so the results produced by different groups were 

slightly different. Below is one of the four group’s submissions, one diagram 
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showing the partitions, and the other one the corresponding decision ‘tree’ 

procedure: 

 

 

 

Not surprisingly - given the small number of training data points and the omission 

of several fields in the original dataset, not to mention the impossibility to 

perfectly predict a film popularity based on any set of parameters – the 

classification of the new points was only slightly better than random (two groups 

correctly predicted three out of five, and the other two groups four out of five). 

The point of this exercise, however, was not to make a perfect prediction, but to 

expose students to the process and then discuss takeaways. The most important 

takeaway was that the algorithm performed better than random guessing but did 

not actually ‘learn’ anything about the nature of film. The other takeaway was that 
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the process of creating the partitions was fairly simple mathematically, although 

quite tedious, especially if it were to be done strictly, instead of approximating. 

This allowed students to glean into how ML just extrapolates from statistical 

properties of the given data, and can detect correlations of data parameters to the 

output it aims to predict, but does not ‘know’ or ‘understand’ anything about the 

actual nature of the data it is given.  

Brainstorming a fair hiring algorithm 
Another important classroom activity was conducted close to the end of the 

semester, with the goal of giving students an opportunity to synthesize their 

knowledge of multiple aspects of the material. Students worked in groups of 

three, and were prompted to suggest ideas for a fair algorithm that selects a group 

of candidates to be interviewed by a company, given the candidates’ CVs. Each 

group brainstormed and proposed ideas, including what kind of data they would 

use to train the algorithm. Other groups then were given a few minutes to ask 

questions about the proposals and provide feedback. Then, the class as a whole 

was asked to combine and summarize promising ideas. Some of the interesting 

takeaways from this exercise were as follows: 

1. Many students demonstrated distrust of automated selection of promising 
candidates altogether and suggested algorithms for elimination of 
unqualified candidates, and then evaluating the resulting pool manually. 
While this demonstrates that the students understood the concerns with 
trusting ML to perform an objective selection, this approach is not realistic, 
thus we tried to steer the students away from proposals that don't 
significantly utilize automation. A milder version of this approach was to 
disregard a large number of parameters in a CV that are strongly correlated 
with economic and social status, gender, or race, such as the name of the 
school candidates graduated from.   

2. Students proposed various ways of detecting and reducing current biases in 
the hiring practices which may be contained in the training data. Specifically, 
they proposed  stratified criteria for different groups of employees (to 
counteract the fact that certain groups, such as women, tend to use more 
modest phrasing for their accomplishments, or that certain underprivileged 
groups are less likely to have graduated from ‘top’ schools). Other ideas 
included randomizing some fields of the data (for instance, randomly 
switching genders and gender-correlated parameters), to make sure that the 
algorithm does not develop a gender bias. Another idea along the same lines 
was to add to the training data made-up data points of strong candidates 
from underrepresented groups (or, if such candidates are already present, 
but only in small numbers, increase their percentages). These proposals show 
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that students have a good understanding of how training works and how 
biases in training data lead to a biased algorithm and are comfortable 
speculating about the effects of using different (including artificially adjusted) 
data sets.     

3. Another important point that was brought up by several students was the 
need for transparency. Open-sourcing algorithms and making anonymized 
training data public were seen as essential for creating a fair algorithm since 
it allows others to scrutinize the methods and point out biases and 
imperfections when they exist.   

 

Final capstone papers and presentations 
For the final capstone papers and presentations students were asked to identify 

an instance wherein ML is applied to address a big-data problem in society, find a 

recent (within the last 6 months) news story addressing the instance, do additional 

research via related news stories and other available sources, and then summarize 

their findings, specifically focusing on potential consequences of the use of the 

technology. The presented work was of a very high quality, showing that all 

students satisfied the course learning outcomes.  

The students chose a wide range of topics, including applications of ML to such 

varied areas as Child Protection Agencies work, legal profession, combating opioid 

crisis, and automated driving. Several students addressed various issues in genetic 

testing and health insurance. Some students focused on social media, addressing 

topics of content regulation (such as restricting inappropriate content), ‘deepfake’ 

videos, and social media ranking and advertising.  

All of the students were successfully able to present the ideas-level overview of 

the algorithms they were describing and the data that the algorithms were trained 

on (to the degree to which it was possible to get this information from their 

sources). This was especially impressive for students whose majors were not in 

mathematical fields. For instance, an Elementary Education major was able to 

describe the mechanisms by which one person’s speech is combined with another 

person’s image in ‘deepfakes’, and a biology major described input-gathering and 

algorithms used in self-driving cars.   

We were also very happy to see that students with more background in computer 

science and mathematics didn’t just try to be on par with their classmates from 

other majors, but used their expertise to go more in-depth into the material. In 

particular, a CS/Mathematics major chose a topic of automated bias detection and 
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removal in algorithms, using, among other sources, a recent CS journal 

publication. This student’s final paper also used psychology resources on 

unconscious bias training, showing that this student also went beyond their major 

subjects.  

Another important observation is that several students choose topics that they 

were personally connected to, such as choosing ‘deepfake’ videos because of 

concerns about online bullying and revenge or choosing issues with DNA testing 

because of medical situations of family or friends.   

Overall, the final capstone papers a good grasp on all aspects of the material, 

including a solid understanding of the core principles of ML, the role of training 

data, and potential implications of using the algorithm in a social context. We were 

also very pleased to see the students’ high level of interest in, and engagement 

with, the material. We are confident that the students will bring this interest and 

understanding into their future occupations, whatever those might be.  

Future work 

Herein we described the first offering of a new course at our institution. 

Leveraging the collaborative, simple structure of a small, selective, American 

liberal-arts college and the interdisciplinary honours programme, we did not have 

to create an elaborate argument for designing a learning experience that 

combines the skills of a media and communication specialist and a computer 

scientist. We hope that this experimental course design can help others develop 

similar courses at other larger colleges, with more separated faculty, where 

collaborations may be more difficult to form, and interdisciplinary classes are 

difficult to place within a class schedule. We believe the effort is worth attempting, 

for during the teaching of the course we learnt many things about not only the 

topics assigned and about our students, but also about ways we could both expand 

our teaching and research agendas. 

Based on student and administrative responses, we are eager to revisit and rerun 

(and improve) the course, perhaps expanding it to a larger interdisciplinary 

audience if/when logistics allow.  In the next offering, we will again keep a weekly 

schedule, and will again keep the cycle of assigning pre-reading and student-

postings of study questions, and then meeting together to consider and plan the 

lecture and discussion.  This teaching preparation time is a necessary element to 
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keep us connected to the specifics of the student needs and helped us greatly with 

planning who would be ‘lead instructor’ for the lesson.  In the future offering of 

the course we may also include more automated ML and data visualization tools, 

to allow students the opportunity to experiment with some ML approaches more 

directly. 

Several of the readings selected and described in this paper were great for 

discussions and we hope to use them again, but in a rapidly changing field such as 

Machine Learning we anticipate that there will be several new examples and 

concerns which we will likely need to address.  We recognize the range and the 

variety of new papers, such as those presented at the ‘Emerging technologies….’ 

conference, can serve as an excellent source for case studies for future offerings 

of the course. 

The activities which captured student interest, such as building decision trees and 

thinking about CVs sorting algorithm decisions provided an excellent learning 

opportunity for students and should be included in future course offerings. 

Students’ course feedback indicated desire for more activities, so we may try to 

expand the range of those.  The students also enjoyed writing the capstone final 

papers, which has not always been the instructors’ experience.  We strongly 

believe that students of all academic majors should write papers that integrate 

research with new inquiry and are extremely pleased with the willingness of the 

students to give the papers in class, and to share the final works with each other 

(and future students/ readers).  Examples of student papers can be found at 

Machkasova’s website: 

http://cda.morris.umn.edu/~elenam/3255Spring2019/index.html). 

 

Conclusions   

The course description stated: The course reviews and questions public attitudes 

about computing and new technologies. It challenges the view that algorithms are 

fair and unbiased. It discusses key Machine Learning mechanisms and the role of 

training data in determining algorithms’ behaviour. It exposes how data rooted in 

current social practices may introduce biases into Machine Learning, which 

perpetuates these biases in society.  

http://cda.morris.umn.edu/~elenam/3255Spring2019/index.html
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In evaluating the ways we met our institution’s student learning outcomes which 

we selected for the course: Engagement with big questions, both contemporary 

and enduring; Critical thinking and problem-solving; Information and technology 

literacy; and Ethical reasoning and action, we found the assignments and 

discussion notes gave us several instances/ data points to make the claim we had 

met all of these goals.  Additionally, in a review of the ways we met the Honors 

programme student learning outcome: demonstrating interdisciplinary thinking in 

scholarly and/or creative ways, students’ final capstone papers and presentations 

indicated that every student (regardless of their major) was able to address both 

technical ideas behind machine learning applications and representations of 

Machine Learning applications in the media. Students were able to point out 

benefits and concerns in regard to specific uses of Machine Learning. It was great 

to see how students’ topics for papers and presentations in several cases extended 

much beyond their backgrounds in their majors.  

The discussions started in our classes have important social outcomes for our 

students and will shape the ways they will think about Machine Learning in the 

future. Anecdotally, several students have already been taking the ideas and using 

them in other courses, and we expect the integration of ideas of the course will 

more-importantly aid the students in future experiences in reading, listening, 

discussing, and critically thinking about technology. 
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