The Effects of Water Quality on the Habitat Use of Tiger Salamanders in Prairie Wetlands

Broc S. Kokesh

Follow this and additional works at: https://digitalcommons.morris.umn.edu/urs_2015

Recommended Citation
https://digitalcommons.morris.umn.edu/urs_2015/7
The Effects of Water Quality on the Habitat Use of Tiger Salamanders in Prairie Wetlands

Brock Koken (Advisor: Heather Waye)
Science and Math Division, University of Minnesota Morris

Introduction

The tiger salamander (Ambystoma tigrinum) is a wide-ranging amphibian of North America common to prairie wetlands. Nevertheless, little is known about their ecology. It is therefore unclear as to what conditions in wetland ponds are well suited for tiger salamanders and what effects human activity may have on established populations. Ponds in prairie wetlands can vary greatly in water quality parameters. Previous work suggests that higher dissolved oxygen levels are ideal (Noland and Ultsch, 1981; Rose and Crompton, 2006). Similarly, Sugalski and Claussen (1997) suggest that salamanders prefer areas of high pH, being a limiting factor in microhabitat use. Conversely, nitrate and ammonia contamination can be lethal to amphibian communities (Rouse et al., 1999) and high nitrite levels may indicate stress levels leading to future nitrate contamination (Griffis-Kyle, 2007). In this study, I assessed how these parameters affect salamander survival and microhabitat use in the prairie pothole region of Western Minnesota.

Field work was conducted for six weeks from late June to early August. The study area selected was 4 ponds within the study site (Figure 2) were selected for intensive study. Minnow traps scattered around each pond were checked daily for captured specimens. Photographs are of two different individuals.

Methods

Field work was conducted for six weeks from late June to early August.

Four ponds within the study site (Figure 2) were selected for intensive study. Minnow traps scattered around each pond were checked daily for captured amphibians. Water samples from each trap site were collected several times a week and tested for pH and phosphate, ammonia, and nitrite levels using a standard water testing kit. Additionally, dissolved oxygen was measured with aYSI device.

Study Site

Figure 1. A. tigrinum specimens in the larval (A) form and metamorphosed (B) form photographed on a 1x1 grid. Photographs are of two different individuals.

Trap sites are labeled from East to West. Pond A—a large, deep pond with stable water quality. Pond B—just south of A, selected for high dissolved oxygen. Pond C—a seasonal pond, selected for high phosphorus levels and very low dissolved oxygen. Pond D—just east of C, selected for high ammonia levels.

Results

Although each water quality parameter varied between individual trap sites, no significant differences in results of tests were shown at this level of specificity. However, trends in the average pH over time are observable with regression analysis as shown in Figure 3. Ponds B, C, and D are shown to contain increasingly basic water over time whereas Pond A becomes slightly more acidic. Likewise, contaminants are better observed between ponds as opposed to within each pond. The average concentrations of each contaminant are shown in Figure 4. Phosphate levels in Ponds C and D are higher than that of A and B by an order of magnitude. Pond D also exhibits greater ammonia levels than all other ponds. Nitrite levels were consistently measured to be 0 ppm in each pond.

Dissolved Oxygen levels between each trap site are shown in Figure 5. Pond B has a noticeably higher oxygen content than any other pond while Pond C shows the lowest amount. Ponds A and D contain roughly equal concentrations.

Discussion and Conclusions

Nitrates and Ammonia

• Higher ammonia levels are correlated to Pond D. This may indicate that a higher population lives therein, producing higher amounts of nitrogenuous waste.

• Ponds C and D have become increasingly more basic over time. While salamanders prefer a higher pH (Sugalski and Claussen, 1997), it is unknown if these salamanders migrate within these ponds to areas of higher pH. Pond D, having the highest pH, had the most captures.

Dissolved Oxygen

• This study did not find a correlation between oxygen levels and salamander abundance. Do levels vary greatly between trap sites.

Nevertheless, tiger salamanders were caught disproportionally both between and within ponds, suggesting that a preference for microhabitat is present. It is therefore worthwhile to continue investigating these relationships in future studies.

Discussion

A significant difference in trap rate is observed both between and within certain ponds. Most individuals were caught in Pond D, particularly at the 1-Aug. 4 individual adults were caught in Pond B, although no larvae were found to be present. In each pond, salamanders were caught disproportionally, with some traps catching no salamanders.

Acknowledgments

Morris-HHMI Summer Undergraduate Research program is supported in part by a grant to the University of Minnesota, Morris from the Howard Hughes Medical Institute through the Precollege an Undergraduate Science Education Program.

I gratefully acknowledge Ally Brown, Heather Waye for her guidance, Tracy Anderson and Julie Kill for providing additional equipment, Teresa Wyckoff and Amanda Flinn for coordinating HHMI and all faculty and staff at UMM who helped to make this research opportunity possible.

References


Table 1. Total number of larval and adult salamanders caught at each trap site. Larvae numbers are bolded. Pond D contained only 4 traps.

<table>
<thead>
<tr>
<th>Trap #</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Figure 1. A. tigrinum specimens in the larval (A) form and metamorphosed (B) form photographed on a 1x1 grid. Figures are of two different individuals.

Figure 2. Study ponds within the Papillon Waterfoot Production Area (PWPA). Trap sites are labeled from East to West. Pond A—a large, deep pond with stable water quality. Pond B—just south of A, selected for high dissolved oxygen. Pond C—a seasonal pond, selected for high phosphorus levels and very low dissolved oxygen. Pond D—just east of C, selected for high ammonia levels.

Figure 3. Average pH for each pond over time.

Figure 4. Average amounts of contamination of each pond.

Figure 5. Average dissolved oxygen values at each trap site. Sites A5, A6, B5, B6, C3, and C4 are not included due to late trap deployment, and therefore, insufficient data.