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PGL2(F`) NUMBER FIELDS

WITH RATIONAL COMPANION FORMS

DAVID P. ROBERTS

Abstract. We give a list of PGL2(F`) number fields for ` ≥ 11 which have

rational companion forms. Our list has fifty-three fields and seems likely to
be complete. Some of the fields on our list are very lightly ramified for their

Galois group.

1. Introduction

One of the great recent advances in number theory is the proof by Khare and
Wintenberger [KW09a, KW09b] of the Serre reciprocity conjecture [Ser87]. The
Khare-Wintenberger reciprocity theorem says that certain two-dimensional Galois
representations in prime characteristic ` necessarily come from classical modular
forms. Once certain normalizations are in place, a given representation ρ typically
comes from just one form g. However if ρ is tamely or minimally wildly ramified
at `, then it comes from two forms g and h, called companions.

The purpose of this paper is to give a systematic collection of fifty-three examples
of this phenomenon of companion forms. Our collection illustrates all three types of
companion forms, which we label 1T or diagonalizable, 2T or supersingular, and 2W
or peu ramifiée. Important early theoretical developments on companion forms in
these senses took place in letters among Deligne, Fontaine, and Serre in the 1970s.
The theory for Type 1T was established by Gross in 1990 [Gro90]. Edixhoven gave
the first complete proofs for cases 2T and 2W in 1992 [Edi92]. To be noted is that
the term “companion form” is often used in the context of 1T only. We are using
it more broadly, because the three cases are very similar from the viewpoint of this
paper.

In Section 2, we present two of the fifty-three examples in some detail, both
of diagonalizable type with ` = 11. Each example starts from a degree twelve
polynomial f(x) ∈ Q[x] with Galois group PGL2(F11) and ends with a pair (g, h)
of companion forms in Q[[q]]. Our focus is not on the polynomials themselves, but
rather on the degree twelve fields K = Q[x]/f(x) they define.

In Section 3, we ask for all fields K belonging to triples (K, g, h) of the same
general nature, including the very strong requirement that both g and h have
coefficients in Q. We restrict to ` ≥ 11 to keep the final collection of manageable
size. Pairwise comparing all known rational forms, we extract those pairs (g, h)
which satisfy the companionship condition. We find in Theorem 3.1 fifty-three
fields K which are part of triples in this way, and we conjecture that there are
no more. The distribution of the number fields K with regard to ` and the three
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2 DAVID P. ROBERTS

notions of companionship is as follows:

` : 11 13 17 19 23 29 31 37 41 43
1T=Diagonalizable: 6 5 2 2 1 2 1 1
2T = Supersingular: 8 7 4 3 3 1 1

2W=Peu ramifiée: 5 1

.

While the forms themselves can easily be made very explicit, our computations in
Section 3 do not produce defining polynomials f(x) for the fields K. Note that our
requirement of rationality on g and h is imposed simply to get attractive examples:
whether or not K belongs to a triple cannot be read off from K; it can only be
determined by computing the corresponding modular forms.

In Section 4, we study the fifty-three fields further, finding defining polynomials
when possible. Some of these number fields K are very lightly ramified for their
Galois group. We explain how incorporating our fields into a systematic tabulation
of number fields based on Serre reciprocity seems possible. This systematic tabu-
lation would involve totally dropping our rationality conditions. To a large extent,
it would then consist of repeating our computations here in the resulting larger
context. In particular, beating our best fields or establishing them as true minima
seems within reach by modular methods.

Computations in this paper were done using a mix of Magma [BCP97], Pari
[PAR13], and Mathematica [Res16]. Together with the closely related paper
[Rob16b], this paper grew from a talk given by the author at Automorphic Forms:
theory and computation at King’s College London, in September 2016. The author’s
research was supported by grant #209472 from the Simons Foundation and grant
DMS-1601350 from the National Science Foundation.

2. Two PGL2(F11) fields with rational companion forms

In this section we present two remarkably parallel examples, centering on triples
(K1, g1, h1) and (K2, g2, h2). We exhibit very concretely how Galois-theoretic in-
variants of the Ki are connected with modular invariants from the (gi, hi). We
keep background theory to an absolute minimum, with some of this theory being
presented in the next two sections.

2.1. Mathieu group sources. Our two examples have the added interest that the
number fields were first found “accidentally” in a context very far removed from
elliptic curves and modular forms. Let

f1(x) = x12 − 4x11 − 4x10 + 16x9 + 24x8 − 30x7(2.1)

−78x6 − 18x5 + 72x4 + 86x3 + 52x2 + 16x+ 2,

f2(x) = x12 − 6x10 − 6x9 − 6x8 + 126x7 + 104x6(2.2)

−468x5 + 258x4 + 456x3 − 1062x2 + 774x− 380.

The fact that both polynomials have Galois group PGL2(F11) can be rapidly con-
firmed by Magma’s GaloisGroup. Their exotic source in each case is related to
one of the five sporadic simple groups Mn discovered by Mathieu in the mid-1800s.
The first comes from the degenerate specialization at y = −472/263 of Malle’s
one-parameter family of M22.2 fields [Mal88, Theorem 2]. The second comes from
the degenerate specialization at t = −173/27 of a one-parameter family of M12.2
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fields [Rob16a, Cover D2, Table 4.5]. These two sources actually give polynomials
of degree 22 and 24 respectively, and we used Magma’s GaloisSubgroup to obtain
degree twelve polynomials with the same splitting field. Finally we used Pari’s
polredabs to reduce the size of coefficients.

Note that the action of Gal(Q/Q) on the roots of a degree `+ 1 polynomial with
Galois group PGL2(F`) gives a surjective homomorphism Gal(Q/Q)→ PGL2(F`).
Shortly we will lift these projective representations to linear representations into
GL2(F`). Throughout this paper, we are emphasizing number fields rather than
the corresponding Galois representations emphasized in more theoretical papers.

2.2. Frobenius partitions. For a degree n number field K = Q[x]/f(x) and a
prime p not dividing its discriminant D, one has a factorization partition λp. The
parts of λp are the degrees of the irreducible factors of f(x) in Qp[x]. If p does
not divide the discriminant Dc2 of the defining polynomial f(x) ∈ Z[x], then λp is
more easily computed as the degrees of the irreducible factors of f(x) in Fp[x].

The polynomial discriminants of f1 and f2 are quickly calculated as

D1c
2
1 = −214 · 330 · 119, D2c

2
2 = −212 · 314 · 119 · 172 · 19074732 · 26151892.

One can not immediately identify the Di and ci themselves by elementary methods.
However from the construction of the stem fields Ki = Q[x]/fi(x) via specialization
of understood covers, one knows at least that in each case only the primes 2, 3, and
11 can divide the field discriminant Di. Table 2.1 gives in each case the factorization
partition λp for the twenty-two good primes p less than a hundred. It also gives the
parity dp of the partition. Both polynomial discriminants are −11 modulo squares,
so the dp agree in the two cases. More explicitly, p occurs on a row with dp = + if
and only if p is a square modulo 11, i.e. if and only if p ≡ 1, 3, 4, 5, 9 (11).

λp dp density Primes p for K1 Primes p for K2 sp
inert 12 − 1/6 13, 29, 79, 83 7, 13, 61, 73, 83 7, 8
torus 43 − 1/12 7, 17 29 2

62 + 1/12 31, 47, 97 23, 59 3
34 + 1/12 37, 71 37, 47 1
26 + 1/24 71 0

split 10112 − 1/5 19, 41, 43, 61, 73 19, 41, 43, 79 6, 10
torus 2512 − 1/20 17 0

5212 + 1/5 5, 23, 53, 59, 67, 89 53, 67, 89, 97 5, 9
uni- 1111 + 1/11 5, 31 4

potent 112 + 1/1320 4

Table 2.1. Frobenius partitions λp correlating with modular
quantities sp = a2p/p

k−1 in our two examples. Here ap and k
depend on choices, but sp does not, as explained in §3.1.

In general, a Frobenius partition λp reflects a more refined invariant, a conjugacy
class Frp in the Galois group. For the group PGL2(F11) ⊂ S12, there are 13 con-
jugacy classes. They give rise to ten of the seventy-seven partitions of twelve, and
these ten partitions are given in Table 2.1. For context, the column “density” gives
the asymptotic frequency of each partition. Frobenius classes Frp and partitions
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behave similarly for all PGL2(F`), and the words in the first column summarize a
structure theory that applies for all `; the split and non-split tori are often referred
to as split and non-split Cartan subgroups.

2.3. Ramification. The discriminants of the two fields Ki can be calculated di-
rectly, say by Pari’s nfdisc:

D1 = −214 · 310 · 119, D2 = −210 · 314 · 119.(2.3)

It is important for us to have a clear picture of the inertia groups Ip ⊂ PGL2(F`)
underlying the discriminants. This information is given automatically by the p-adic
identifier at the website of [JR06]. Here, underlying the two exponents 10, ramifi-
cation is tame of order |Ip| = 11. Underlying the two instances of 119, ramification
is tame of order |I11| = 10. The completions of the two fields at 11 are actually
isomorphic, both being Q11[π]/(π10 − 66) × Q11 × Q11. This agreement is a little
unexpected because Q11[π]/(π10 − 66) is one of ten different totally ramified decic
11-adic fields, all with cyclic Galois group C10.

Since the exponents 14 are greater than or equal to the degree 12, ramification
must be wild at 2 in K1 and at 3 in K2. The database describes this ramification
in terms of the slope-contents [4/3, 4/3]23 and [3/2]22 respectively, the numbers in
square brackets being wild slopes as explained in [JR06]. At 2, the field field K1

has decomposition group S4, inertia group A4, and wild inertia group V . Similarly,
at 3 the field K2 has decomposition group the dihedral group D6, inertia group S3,
and wild inertia group A3.

It is often enlightening to work not with the discriminant D of a degree n field
K, but rather with the root discriminant δ = |D|1/n. For example, δ relates well
to the root discriminant ∆ of a Galois closure L: one has δ ≤ ∆ with equality
if and only if L/K is unramified. For our two cases, the renormalization to root
discriminants works out to

δ1 ≈ 33.87, δ2 ≈ 38.77.(2.4)

The Galois root discriminants are best calculated one prime at a time. If p is tamely
ramified with |Ip| = t, then its multiplicative contribution is p(t−1)/t. If t is wildly
ramified then the contribution can be directly computed from the slope content as
explained in [JR06]. In our cases, one obtains

∆1 = 27/6310/11119/10 ≈ 52.75, ∆2 = 210/1137/6119/10 ≈ 58.55.

The root discriminants δ1, δ2, ∆1, and ∆2 are all unusually small for the Galois
group PGL2(F11), as we discuss further at various points of Section 4.

2.4. Lifts. Serre reciprocity is naturally formulated at the linear level of GL2,
while we in this paper are working as much as possible at the computationally
more accessible projective level of PGL2. To make the connection to modular
forms, we first have to lift from the projective level to the linear level.

Let SL±2 (F11) be the group of two-by-two matrices over F11 with determinant±1.
Let C5 be the group of scalar matrices of odd order. Via the product decomposition
GL2(F11) = SL±2 (F11)×C5, one can focus attention on SL±2 (F11). This group has
computational appeal because, unlike GL2(F11), it is a subgroup of S24.

For context, note that the polynomials f1(x2) and f2(x2) both have Galois group
isomorphic to the full wreath product C2 o PGL2(F11) of order 212 · |PGL2(F11)|.
At issue is whether the defining polynomials fi can be adjusted so that replacing x
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by x2 yields the group SL±2 (F11). For this to happen, a sign εv ∈ {−1, 1} has to be
1 for all the ramified places {∞, 2, 3, 11}. Remarkably indeed εv = 1 always, and

so lifted fields K̃i are known to exist.
Finding the better polynomial for the two K̃i requires a computation with S-

units with S = {2, 3, 11}, as discussed in [Coh00, Chpt 5]. In the first case, a

polynomial for a lifted field K̃1 with Galois group SL±2 (F11) is

f̃1(x) = x24 − 20x22 + 208x20 − 1380x18 + 6432x16 − 21696x14 + 52824x12

−90432x10 + 100128x8 − 65728x6 + 31808x4 − 17152x2 − 14256.

As d runs over square-free integers, the fields defined by f̃1(
√
dx) run over all

lifts of K1. The field K̃1 = Q[x]/f̃1(x) we have chosen has discriminant D̃1 =
−2323201119. Our choice is one of the two with smallest discriminant, the other
one being given by f1(

√
−11x). A corresponding f̃2(x) = f̃11(21,−26, x), giving a

lifted field discriminant of D̃2 = −2203301119, is a specialization of the parametric
family (4.11).

2.5. Conductors. To make the connection with modular forms, we need to study
the ramification in the lifted fields K̃i, and then translate to conductors. From
the discriminants reported above, K̃1/K1 is ramified at 2 and 11 while K̃2/K2 is
ramified at 3 and 11. At the wild prime 2 in the first case, an extra wild slope
appears so that slope content is now [3/2, 4/3, 4/3]23. At the wild prime 3 in the
second case, the tame part of inertia gets larger, so that slope content becomes
[3/2]24.

The conductors of the Galois representations coming from the inclusion
SL±2 (F11) ⊂ GL2(F11) are again small:

N1 = 24 = 23 · 3, N2 = 54 = 2 · 33.(2.5)

The source of the exponents 1 is that Ip in both cases can be taken to be strictly
upper-triangular matrices, and so the subspace F2

11 fixed by Ip has codimension
one. At the primes with exponent 3, the subspace fixed by Ip is just {0}. However
the exponent is 3 rather than the codimension 2 because of wildness; 3 arises in
both cases as the codimension 2 of inertial invariants times the highest slope 3/2.

2.6. Corresponding newforms. We will use a standard notation for modular
forms, in which Sk(N) denotes the space of cusp forms of weight k on the group
Γ0(N). Via expansion at the cusp ∞, a modular form can be viewed simply as
an element of the power series ring C[[q]]. Of particular importance for us are
the new subspaces Snew

k (N), which has a canonical basis Pk(N) of forms q + · · ·
which are eigenforms for both the Atkin-Lehner operators wpe , with pe||N , and
the Hecke operators Tn, for n - N . The word newform always refers to an element
of a Pk(N). Standard references include [Kob93], [Ste07]. Our use of modular
forms in this paper is mostly limited to extracting particular newforms from the
collection of newforms with rational coefficients drawn up in [Rob16b]. Section 2
of this reference is a brief synopsis of modular forms, adapted to our current needs.

The Serre reciprocity theorem in our cases says that Ki comes from a newform
in Pk(Ni), where k ∈ {2, 4, 6, 8, 10, 12}. Because of the nature of tameness at 11,
Gross’s theory of companion forms of Type 1T says that it comes from two forms,
in weights adding to 12.
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In the first case, the sets Pk(24) respectively have size 1, 1, 3, 3, 5, and 5. Looking
through the eighteen forms, only two match out through p < 100, these being

(2.6)
g1 = q +3q3 +14q5 −24q7 +9q9 −28q11 + · · · ∈ P4(24),
h1 = q +27q3 −530q5 +120q7 +729q9 −7196q11 + · · · ∈ P8(24).

Here and always for PGL2(F11) fields, a field K and a newform
∑
anq

n ∈ Pk(N)
correspond if and only if the partition λp and the normalized square sp = a2p/p

k−1 ∈
F11 match for all p - 11N via the λp and sp columns of Table 2.1. As an example,
whenever λp = 12, one must have sp ∈ {7, 8}. Similarly, if sp = 4, one must have
λp ∈ {1111, 112}. As a completely explicit instance of the correspondence being
discussed, consider K1 and (g1, h1) at p = 5. One has λ5 = 5212 because the
irreducible factorization of f1(x) in F5[x] is(

x5 + 4x+ 2
) (
x5 + 3x3 + 3x2 + 3x+ 2

)
(x+ 2)(x+ 4).

Indeed the normalized squares 142/53 and 5302/57 both reduce to 5 in F11, in
conformity with Table 2.1.

The second case is similar. The sets Pk(54) have sizes 2, 4, 6, 8, 10, and 12.
Looking through these forms, four match K2 through p < 100, two of which are

(2.7)
g2 = q −q2 +q4 +3q5 −q7 + · · · ∈ P2(54),
h2 = q +16q2 +256q4 −435q5 −2527q7 + · · · ∈ P10(54).

The other two which match are twists gχ2 and hχ2 of the first two, differing only
in that coefficients an with n ≡ 2(3) are negated. This twisting is not seen in the
matching criterion.

A subtlety of the general situation is nicely illustrated by looking at weights
more closely in our pair of examples. The field L = Q11[x]/(x10 − 66) is a splitting
field for both polynomials f1 and f2. Let Gi be the Galois group of fi with respect
to this splitting field, so that both Gi contain the cyclic group C = Gal(L/Q11) of
order ten. Note that C has four automorphisms ij , where ij(σ) = σj , and j can
be 1, 3, 7 or 9. The normalizer of C in Gi is Di, a dihedral group of order 20.
This means that of the |PGL2(F11)| = 12 · 11 · 10 isomorphisms from G1 to G2,
twenty take C to C. Ten of these are some ij and ten are ij′ , with j + j′ = 10. A
Galois-theoretic computation shows that {j, j′} = {3, 7}, not the other possibility,
{1, 9}. This is why the two weight sets {4, 8} and {2, 10} are different. Refining
this computation further, one can see purely Galois-theoretically that the weights
for f1 and f2 are {4, 8} and {2, 10} respectively.

3. Fifty-three PGL2(F`) fields with rational companion forms

In this section, we prove the existence of fifty-three PGL2(F`) fields K with
associated rational companion forms g and h. In contrast to the previous section,
here we start with (g, h) and obtain only the abstract existence of K, not an explicit
defining polynomial f(x). The examples of the previous section provide helpful
illustrations, but to a large extent this section can be read independently.

3.1. Triples (K, g, h). In the introduction, we explained that we are seeking fields
K belonging to triples (K, g, h) similar to the triples (Ki, gi, hi) of the previous
section. In this subsection, we define precisely the type of triples we seek.

Throughout, a prime ` is present, typically not incorporated into the notation.
We exclude the prime ` = 2 because it behaves slightly differently. When we
pursue classification starting in §3.3, we will take ` ≥ 11. The fields K we allow
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are those that can be presented in the form Q[x]/f(x) with f(x) ∈ Q[x] a degree
`+ 1 polynomial with Galois group PGL2(F`). Note that our focus on the abstract
stem field K of f(x) rather than the splitting field Kgal ⊂ C of f(x) is a question
of language, as the abstract non-Galois extension K and the embedded Galois
extension Kgal each determine the other.

Beyond the prime `, three more invariants associated to a triple (K, g, h) are
positive integers N , k, and k′. The integer N , called the level or the conductor, is
required to not be a multiple of `. The integers k and k′, called the weights, are
even. Without loss of any fields K, by the results of [Edi92, §7], we require also
that k and k′ are in the range [2, ` + 1]. The remaining entries of the triples are
newforms with the common level N , trivial character, rational coefficients, and the
indicated weights:

g =
∑

anq
n ∈ Snew

k (N), h =
∑

bnq
n ∈ Snew

k′ (N).

Here basic notation for newforms has been recalled in a formalistic way at the
beginning of §2.6, with references also given there.

A triple (K, g, h) has yet more invariants. In particular, for primes p not dividing
N , the field K yields a factorization partition λp, the form g determines a normal-
ized square sp = a2p/p

k−1 ∈ F`, and the form h likewise determines a normalized

square s′p = b2p/p
k′−1 ∈ F`. These numeric invariants are required to correspond as

follows. First, sp = s′p. Second, let op be the least common multiple of the parts of
λp. Let Op be the common order of the elements(

0 −1
pk−1 ap

)
and

(
0 −1

pk
′−1 bp

)
in the group PGL2(F`). Then it is required that either op = Op or (op, Op) = (1, `).
Table 2.1 illustrates this correspondence for ` = 11.

We require that g and h are related via cyclotomic twisting as follows. For either
t = 1 or t = 2, we require that k + k′ = `− 1 + 2t and

(3.8) ntan ≡ nkbn (`)

for all n. Symmetry between g and h is present, because this last condition could
be equivalently rewritten as nk

′
an ≡ ntbn (`). If k = k′, either congruence says

that an ≡ χ(n)n, with χ(·) = (·/`) the quadratic character on F`. As our last
requirement on triples, we partially normalize by demanding k ≤ k′.

Given a triple (K, g, h), one can sometimes trivially make a new one in three
ways. First, one can replace g and/or h by a different form with the same reduction
to F`[[q]] in the somewhat rare case that such a form exists. Second, one may be
able to twist g and/or h by a quadratic character, keeping the level the same, as
discussed with examples after (2.7). Finally if k = k′ one can simply switch g and
h. Note that in this final case, g and h are not trivially obtained from one another
because twisting either g or h by the quadratic character χ above increases the level
from N to `2N . None of these operations change K, which is why Theorem 3.1
below counts K extendable to triples, rather than triples themselves.

3.2. Conditions on K and companion forms. This subsection discusses which
PGL2(F`) number fields K have a chance of being in a triple (K, g, h). Our dis-
cussion defines the three types of companion forms, and in the process motivates
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some of the definitions made in the previous subsection. The next four paragraphs
do not use rationality.

Let K be any PGL2(F`) field which is not totally real. Then, by Serre reciprocity,
K comes from a newform g, perhaps with irrational coefficients, in some space
Snew
k (N,χ). Here the Dirichlet character can be non-trivial in general, and the

weight satisfies χ(−1) = (−1)k and is therefore allowed to be odd. Matching is
between λp as before and now sp = a2p/(p

k−1χ(p)). One can always take k in the
interval [2, `+1], which accounts for our making this restriction on k in the previous
section.

Let D be the discriminant of K, and write c = ord`(D). The largest c can be
is 2` − 1. Suppose c > `, so that c has the form ` − 2 + k for k ∈ [3, ` + 1]. Then
g necessarily has weight k. The condition (3.8) makes sense for irrational forms
reduced to characteristic ` as well, and there is no companion form h. Examples
with an explicit polynomial f(x) for K and g rational are given for N = 1 and
` ≥ 11 in [Bos11b], and for N ∈ {2, 3, 4, 6, 8} and ` ≤ 7 in [Rob16b, §6.3].

Still allowing irrational forms and general character, consider the complementary
case c ≤ `, except that we temporarily exclude c = 0. For these more lightly
ramified fields, there is always a companion form h with weight k′ satisfying k+k′ =
`− 1 + 2t with t ∈ {1, 2} as for (3.8). The three cases are as follows:

(3.9)

Case Size of `-inertia ord`(D) Consequence for (k, k′)
1T=diagonalizable (`− 1)/d `− 1− d k + k′ = `+ 1
2T=supersingular (`+ 1)/d `+ 1− d k + k′ = `+ 3
2W=peu ramifiée `(`− 1) ` (k, k′) = (2, `+ 1).

The case c = 0 would be similar, except that the two weights should be (k, k′) =
(1, `), with the form of weight 1 usually living only in characteristic ` [CV92].
Summarizing, a fundamental reason to be interested in companion forms from a
number-theoretic viewpoint is that existence of a companion form translates into
light ramification at `.

An important distinction between the cases deserves to be mentioned. If from
g one sees that s` is zero in F`, then one is automatically in Case 2T; one knows
without looking that there is then a companion form h in weight `+3−k. However
if s` 6= 0, then one really needs to look for a companion form in weight `+ 1− k to
identify ramification. One is in Case 1T only if there is a such a companion form.
Otherwise, c = `− 2 + k as above, and ramification is wild. If k = 2, one is in the
case 2W and there is necessarily a companion form, but now in weight `+ 1 rather
than `− 1. If k > 2, one is in the generic case and there is no companion form.

Now we return to our requirement that both g and h have rational coefficients.
Then the Nebentypus χ is trivial, forcing the discriminant D to be (−1)(`−1)/2`

times a square. Moreover the field K has a lift to a field K̃ with Galois group
embedding in GL2(F`). For any ` we expect infinitely many K to satisfy these two
natural conditions. They all fit into a (K, g, h), as long as we allow irrational (g, h).
Besides implying these two conditions, rationality of coefficients on the modular
side does not translate into anything natural on the Galois side. Rather it just
corresponds to restricting to a presumably much smaller subset of this collection of
fields K.
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3.3. Finding and confirming triples (K, g, h). To obtain triples (K, g, h) with
g and h rational, we use the collection of rational newforms without complex mul-
tiplication built up in [Rob16b]. For t ∈ 1, 2 and each (`,N, k, k′) within the range

` k = 2 4 6 8 10 12 14 16 18 20 22

11
54
182

24
42
120

78
78

24
42
120

54
182

13 22

7
70
84
210

7
70
84
210

22

17 24 42 42 24
19 10 24 24 10
23 30 30
29 6 8 8 6
31 12 12
37
41 3 3

Table 3.2. Guide to the twenty triples (K, g, h) of type 1T.
The conductor N associated to each K appears twice, once as the
level of g and once as the level of h. The boldface 24’s and 54’s
represent the triples of Section 2.

of the collection, we look at all potentially congruent rational pairs g ∈ Snew
k (N)

and h ∈ Snew
k′ (N). Motivated by the definitional congruences (3.8), we consider

δ =
∑
n cnq

n ∈ F`[[q]] with cn = ntan − bnnk. Let θ = q ddq be Ramanujan’s theta

operator. As described in [Gro90, (4.5)], this operator increases weights of reduced
modular forms in F`[[q]] by ` + 1. The difference δ = θ2f − θk+2g in question is
then the reduction of a modular form in Mκ(N), where κ = k′+ (k+ t)(`+ 1). Let
σ1(N) =

∏
pe||N (pe + pe−1) be the index of Γ0(N). Then by [Ste07, Thm 9.18],

δ is determined by its Fourier coefficients cn for n at most the Sturm bound
S = κσ1(N)/12. We compute these cn until either one of them is nonzero or
S is reached. In the latter case, we have confirmed that indeed (g, h) is a compan-
ion pair. Sometimes the common sp = a2p/p

k−1 = b2p/p
k−1 inspected for p - `N do

not suffice to ensure the surjectivity of the projective representation. In these few
cases, we identify the relevant number field, so as to unconditionally confirm lack of
surjectivity. Numerics associated to the fifty-three pairs remaining are in Tables 3.2
and 3.3. Each field K gives rise to a minimal conductor N appearing twice in the
`-row, once in the k column and once in the k′ column. The parenthesized entries
(N) on Table 3.3 indicate two of the (g, h) discarded because of nonsurjectivity of
the Galois representation into PGL2(F`).

As an example, the largest Sturm bound encountered in a Type 1 pair oc-
curs for (`, k, k′, N) = (13, 6, 8, 210). Here the forms are the unique newforms
in their one-dimensional Atkin-Lehner eigenspaces, g ∈ Snew

6 (210)−−++ and h ∈
Snew
8 (210)+−−−. One has κ = 92, σ1(210) = 576, and so the Sturm bound is
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` k = 2 4 6 8 10 12 14 16 18 20 22 24

11

14
15
20
24
30
42
84
96

(8)

10
42
70
78
96

10
42
70
78
96

(8)

14
15
20
24
30
42
84
96

13

5
24
38
50
54
294

30
30

5
24
38
50
54
294

17 30 30
50
66

42
42

50
66

30 30

19 30 (4)
3
90

3
90

(4) 30

23
29 30 12 2 2 12 30
31
37 6
41
43 6

Table 3.3. Guide to the twenty-seven triples of type 2T and the
six triples of type 2W, the latter italicized. The general format
follows that of Table 3.2, so that entries are conductors N . To the
right of the chart, there should also be 6’s at locations (`, k) =
(37, 28) and (43, 36) The boldface 5’s, 3’s, and 2’s are pursued in
§4.4. Also in parentheses are two degenerate triples discussed in
§4.5.2.

S = 4416. A Magma computation using built-in commands in a straightforward
way took 24 minutes to confirm that δ ∈ F13[[q]] is indeed zero.

Summarizing, our computations prove the following theorem.

Theorem 3.1. There are at least fifty-three number fields K belonging to triples
(K, g, h) satisfying the following conditions: K has degree `+ 1 and associated Ga-
lois group PGL2(F`) for a prime ` ≥ 11; g and h are rational newforms which
are companion forms modulo ` and have projective modulo ` representations corre-
sponding to K.

In the sequel, we will sometimes simply speak of the fifty-three triples (K, g, h),
always chosen with g and h having minimal level N , even though in a few cases
there are the ambiguities in g or h mentioned at the end of §3.1. The last type
of ambiguity mentioned there arises in the three cases where k = k′ and so that
one can interchange g and h. For example, the two forms of level 30 at position
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(`, k) = (13, 8) in Table 3.3 are

g = q + 8q2 − 27q3 + 64q4 + 125q5 − 216q6 + 512q7 + · · · ,
h = q − 8q2 − 27q3 + 64q4 − 125q5 + 216q6 − 1084q7 + · · · .

As explained in §3.1, when reduced to F13[[q]], these forms become twists of one
another by the quadratic character (·/13). However there is no such direct relation
between g and h as forms in C[[q]], with (ap, bp) = (512,−1084) being illustrative
of (ap, bp) for all p ≥ 7.

3.4. Conjectural completeness. We believe that the list of fifty-three number
fields in Theorem 3.1 is complete. In this subsection, we give our reasons; in brief,
the fifty-three number fields arise towards the the beginning of our search. We have
computed much further and found no more.

In general, for the weights k ≤ k′ associated to the pair (g, h), one has k′ ≥
(` + 1)/2. Conjecture 1.1 of [Rob16b] says that there are no non-CM newforms
with rational coefficients and weight k′ ≥ 52. This would imply that there are
indeed no fields for ` ≥ 101. Conjecture 1.1 of [Rob16b] says moreover that all
such newforms of weight k′ ≥ 18 are known, as indeed their minimal levels N are
always ≤ 30. This would imply our list of three fields for ` ≥ 37 is complete. It is
moreover argued in [Rob16b] that all or very close to all such newforms in weights
10, 12, 14, 16 are known too. This makes our list twenty-one fields for ` ≥ 17 likely
to be complete too.

The evidence in [Rob16b] suggests that for k ∈ {6, 8}, there are likely a few
non-CM rational newforms with minimal level beyond the cutoffs C6 = 1000 and
C8 = 700 used there. However it seems unlikely to us that these unknown newforms
are part of a companion pair, expecially given that the largest level N appearing
on Tables 3.2 and 3.3 is 294. It is for this reason that we believe that our lists of
thirteen and nineteen fields for ` = 13 and ` = 11 respectively are complete as well.

3.5. Explicit formulas. In [Rob16b], we explained how to get completely explicit
formulas for newforms in the cases N ∈ {2, 3, 4, 6, 8}. The entries for these N in
Tables 3.2 and 3.3 correspond to the following companion forms

N = 2 : ∆+
14

29∼ ∆−18

N = 3 : ∆−10
19∼ ∆+

12, ∆−20
41∼ ∆+a

22 ,

N = 4 : (∆−6
19∼ ∆−16),

N = 6 : ∆−−12
29∼ ∆++

18 , ∆−−12
37∼ ∆+−

28 , ∆+−
10

43∼ ∆−+36 ,

N = 8 : (∆+
4

11∼ ∆−10), ∆+
14

29∼ ∆−b16 .

Here ∆ε
k denotes the unique newform of weight k on Γ0(N) with Atkin-Lehner

eigenvalue string ε. The unusual cases (k,N) = (3, 22) and (8, 16) are highlighted
in [Rob16b], as in these cases a two-dimensional Atkin-Lehner space has two ra-
tional newforms. The above display identifies which newform is involved in the
compansion forms, with completely explicit formulas for ∆+a

22 and ∆−b16 given in
§5.3 and §5.6 of [Rob16b] respectively.

One could also write down explicit formulas for other N . For example, define

Θt =
∑
x,y∈Z2 qt(x

2+xy+y2). Returning to our very first example with N = 24, the

unique newform of weight two is ∆−+2 = 18−1(Θ4 − Θ1)(Θ2 − 4Θ8). Like all the
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other generators of cuspidal ideals considered in [Rob16b], it is also an eta-product,
η2η4η6η12. The companion forms from (2.6) have the explicit formulas

g1 = ∆−−4 = 3−1(Θ2
2 + 2Θ2

4)∆−+2 ,

h1 = ∆+−
8 = 9−1(Θ2

2 − 2Θ2
4)(7Θ4

2 − 44Θ2
2Θ2

4 + 28Θ4
4)∆−+2 .

The formulas constructible from [Rob16b] for the nine companion pairs displayed
above are of a similar nature. The main congruence (3.8) can be seen explicitly, by
expanding the power series. For example, for both g1 and h1, the first five primes
having Fourier coefficient congruent to zero modulo 11 are 103, 149, 179, 197, and
257.

4. Lightly ramified number fields

This section first obtains polynomials for some of the fifty-three number fields
from the last section. It next analyzes ramification in these number fields, finding
that some root discriminants are particularly small. Finally it discusses the natural
problem of obtaining complete lists of number fields with Galois group a finite
subquotient of GL2(F`) and small root discriminant.

4.1. Polynomials from elliptic curves. For eleven of our triples (K, g, h), the
modular weight of the form g is 2. As g has rational coefficients, there is a corre-
sponding elliptic curve Eg, easily found on the LMFDB [LMF16]. A degree ` + 1
polynomial can then be obtained for K by looking at the `+ 1 different subgroups
of Eg(C) of size `. Magma’s AtkinModularPolynomial does this immediately.

For example, only one of eleven triples has ` 6= 11, and its residual prime is ` = 17.
There are eight elliptic curves with the required conductor 30, all isogenous and
hence all yielding the correct K. One of the j-invariants is 713/(24335). Specializing
the Atkin modular polynomial to this j-invariant and applying polredabs yields

x18 − 2x17 − 714x15 + 3060x14 − 7854x13 + 258468x12 − 1062840x11

−2425764x10 − 6360720x9 + 224396532x8 − 694308084x7(4.10)

−1149382920x6 + 8831732832x5 − 3417673200x4 − 68962605552x3

+206896699224x2 − 267387716040x+ 143842600848,

with discriminant 2163165161717. The large coefficients are a reflection of the rela-
tively large root discriminant δ ≈ 298.6. In general, to capture lifts to GL2(F`) one
has to work with polynomials of degree 2j(`+ 1) where j = ord2(`− 1). The case
of ` ≡ 3 (4) is easiest, as j = 1 and one can work with SL±2 (F`) as a substitute for
GL2(F`). The case ` = 17 is at the opposite extreme, and one would have to use a
degree 288 polynomial to lift (4.10).

The other ten triples all have ` = 11 and so can be treated uniformly, even
at the lifted level of degree 24 fields K̃ with Galois group SL±2 (F11). Here it
does not suffice to work with j-invariants, as quadratic twisting is seen in the lift.
Accordingly we work with actual elliptic curves y2 = x3 + ax + b. Starting with
the Atkin modular polynomial with ` = 11, lifting to degree 24 polynomials for
individual j, and interpolating, we obtain the following polynomial with just seven
terms:

f̃11(a, b, x) = d10x24 − 15840d5x12 − 337920ad3x8

−2280960bd2x6 + 811008a2dx4 + 663552abx2 − 2816.(4.11)
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Here we have abbreviated using the discriminant d = −4a3 − 27b2. Correctness
of the seven-term polynomial is algebraically confirmed by comparing with a full
11-division polynomial of degree 120 and factoring a resolvent. The polynomial
applies to our ten cases through the following chart:

1T 2T 2W
N 54 182 14 20 30 15 24 42 84 96
a 21 13861 −675 −108 1917 −27 54 −5211 −108 −189
b −26 426358 13662 297 99198 8694 189 319734 −1755 −540

.

We remark that we have found analogs in Q(a, b)[x] of the seven-term (4.11) for
` = 7, 19, and 23; these analogs are even polynomials of degree 2` + 2 and Galois
groups SL±2 (F`) having 6, 15, and 18 terms respectively.

4.2. Polynomials from higher weight modular forms. For forty-two of our
(K, g, h), the smaller weight k is at least four. Our discussion so far has included a
polynomial for only one of these fields K, namely our very first example K1, with
defining polynomial f1(x) from (2.1).

It is however theoretically possible to take a modular form as a starting point
and compute an associated mod ` Galois representation. Explicit examples in
the literature currently start from either forms with rational coefficients in level
N = 1 [Bos11c, Mas13] or forms with irrational coefficients in weight k = 2 [Bos07,
Bos11a].

Our collection of examples provides a testing ground for these methods in the
setting of N > 1 and k > 2. Most of our examples seem to be currently beyond
computational reach, in part because one has to compute lifted polynomials on the
way to projective polynomials. However Mascot has found polynomials in three
of the forty-one cases left open by this paper, with many details given in [Mas16].
His most complicated case is the PGL2(F41) field on Table 3.2, where he finds a
polynomial of degree 23(41+1) = 336 on the way to the final projective polynomial
x42 − 2x41 + 8x40 + · · · .

4.3. Ramification in modular fields. One does not actually need polynomials
to determine ramification in our fields K, as Serre reciprocity is refined enough to
calculate it on the modular side.

For a prime p 6= ` exactly dividing a minimal conductor N , ramification is tame
of order `. It contributes p(`−1)/(`+1) to the root discriminant and p(`−1)/` towards
the Galois root discriminant. If p2 exactly divides the minimal conductor N , then
ramification is tame of order e = 3, 4, or 6, so that e divides exactly one of `− 1 or
`+ 1. If p = 2 the only possibility is e = 3 and if p = 3 the only possibility is e = 4,
as otherwise ramification would be wild. The contribution to the root discriminant
is p(e−1)(`−1)/(e(`+1)) if e divides `−1 and p(e−1)/e if e divides `+1. The computation
to the Galois root discriminant is always p(e−1)/e. If ordp(N) ≥ 3, ramification is
wild and the procedure is more complicated, as with the two examples given in
Section 2.

The contribution of ` to the root discriminant depends on the type and weights.
Taking (3.9) as a starting point, and writing − in type 1T and + in type 2T, put
d = gcd(k − 1, ` ± 1) = gcd(k′ − 1, ` ± 1) and e = (` ± 1)/d. The size of the
inertia group I` is then e. The contributions of ` are `(e−1)(`±1)/(e(`+1)) to the root
discriminant and `(e−1)/e to the Galois root discriminant. As k and k′ are even, d is
always odd. In fact d = 1 except for the cases (`,N) = (11, 78), (13, 22), (19, 10) on
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Table 3.2, (13, 30), (17, 42), (29, 12) on Table 3.3, and the degenerate cases (11, 8)
and (19, 4) on Table 3.3. Here the inertial group size reductions are respectively
d = 5, 3, 3, 7, 9, 3, 3, and 5. For cases of type 2W, the contribution to the root
discriminant is ``/(`+1), while the contribution to the Galois root discriminant is
`1+(`−2)/(`(`−1)).

4.4. Four lightly ramified fields. The root discriminant δ and Galois root dis-
criminant ∆ for four of our fields are in the middle block of Table 4.4. The last

Tame at ` from wild at ` from
companion forms Ramanujan’s ∆12

` N δ ∆ N δ ∆
11 24 33.87 52.75 1 66.44 118.39
13 5 43.00 47 .82 1 67.62 112.04
19 3 44 .07 46 .43 1 71.48 103.60
29 2 49 .50 50 .62 1 79.64 103.59

Table 4.4. Root discriminants δ and Galois root discrimi-
nants ∆ for eight lightly ramified number fields with Galois group
PGL2(F`). Italicized entries are candidates are for smallest possi-
ble for their context.

three cases are uniformly behaved as they all have type 2T with N = p prime.
Their root discriminants are given by p(`−1)/(`+1)``/(`+1) while their Galois root
discriminants are given by the slightly larger number p(`−1)/```/(`+1). The rest of
this subsection puts the four pairs (δ,∆) into context.

4.4.1. Comparison with the Serre-Odlyzko constant Ω. Analytic lower bounds on
root discriminants of degree n fields increase as n → ∞ to an asymptotic limit of
Ω′ = 4πeγ , with γ ≈ 0.5772 being Euler’s gamma constant. Under the generalized
Riemann hypothesis, these bounds are increased so that the asymptotic limit be-
comes Ω = 2Ω′ ≈ 44.76 [Odl90, (2.6)]. In [JR07] and then [JR14, §9,10], we put
forward the principle that it is extremely unusual for a large degree Galois number
field to have root discriminant less than Ω. In the four cases of Table 4.4, the Galois
root discriminants are quite close to Ω.

4.4.2. Comparison with fields from the Ramanujan newform. An alternative ap-
proach to keeping root discriminants small is simply to insist that levels N be
just 1. The smallest weight newform with N = 1 is the famous Ramanujan form
∆12 ∈ S12(1). Its projective mod ` Galois respresentations are known to be sur-
jective onto PGL2(F`) except for ` ∈ {2, 3, 5, 7, 23, 691} [SD75]. For surjective
representations with ` < 3500, Elkies and Atkin showed there is no companion
form of type 1T [Gro90, §17]. The first two ` for which there is a companion form
of type 2T are known to be 2411 and 7758337633 [LR10]. When ` > 7 and no
companion forms are present, the slope content at ` is [(` + 10)/(` − 1)](`−1)/w;
here w = 10 if ` ≡ 1 (11) and otherwise w = 1. The resulting quantities, assuming
w = 1 in the case of ∆, are

δ = `(`+10)/(`+1), ∆ = `(`
2+10`−12)/(`2−`).
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In the four examples of Table 4.4, the field from ∆12 is substantially more ramified
than the tame field.

4.4.3. Comparison with other fields. Schaeffer found a weight 1 modular form with
level N = 3 · 227 and quadratic character χ−227 living in characteristic 11 [Sch15,
Table 4]. From this modular form, one knows that there is a PGL2(F11) field
with root discriminant δ = 310/122275/12 ≈ 23.94 and Galois root discriminant
∆ = 310/112271/2 ≈ 40.90. These quantities are much smaller than the correspond-
ing quantities on the ` = 11 line of Table 4.4. At present, one does not have a
polynomial for this remarkable field.

More explicitly, from an elliptic curve with conductor 128 and j-invariant also
128, one gets a degree fourteen polynomial with Galois group PGL2(F13) and slope
content [8/3, 8/3]3 at 2 and [13/12]12 at 13. This gives δ = 213/7313/14 ≈ 39.21
which undercuts 43.00 from Table 4.4. However the Galois root discriminant ∆ =
213/613167/156 ≈ 69.94 is well above 47.82.

4.5. The tabulation problem and group-drop. A standard problem in the
theory of number fields goes as follows: Let G be a transitive permutation group of
degree n; let B be a positive real number; determine the complete list of degree n
number fields K with associated Galois group G and root discriminant ≤ B. Often
one thinks in terms of the ordered list of root discriminants, δ1(G) ≤ δ2(G) ≤
δ3(G) ≤ · · · , with particular interest in finding δ1(G) for as many permutation
groups as possible.

The database [JR14] contains solutions of this problem for many small G and
large B. For solvable groups G, class field theory lets one obtain non-empty lists
for quite large G in quite large degree n. However for almost simple non-solvable
groups realized in their lowest degree, for example Sn itself or PGL2(F`) ⊆ S`+1

for ` ≥ 7, the standard purely number-theoretic approach rapidly decays from easy
to impossible as n increases from 5 to 10. The numbers δ ≈ 44.07 and 49.50 from
Table 4.4 are currently candidates for δ1(G) with G = PGL2(F`) ⊂ S`+1, with
` = 19 and 29 respectively. Similarly, the numbers ∆ ≈ 47.82, 46.43, and 50.62 are
candidates for G = PGL2(F`) ⊂ S`3−` and ` = 13, 19, and 29 respectively.

For larger permutation groups G ⊆ Sn, as studied especially in [KM01], one
often starts with a parameterized family of fields Kt having Galois group in G
for all t and equal to G for most t. One searches among these fields for the Kt

with particularly small root discriminant. Often one encounters the phenomenon
of group-drop: the Kt with the smallest root discriminant all have Galois group
strictly smaller than G. When this phenomenon occurs with great strength, it is
some heuristic indication that the smallest root discriminant of a G-field found is
not too far above the actual minimum δ1(G) sought.

The phenomenon of group-drop has indeed occurred with great strength behind
the scenes in §2.1, §3.3, and §4.1. We add some perspective now by discussing some
numerics of the group-drops observed.

4.5.1. Drops from Mathieu groups to PGL2(F11) in §2.1. It seems that all the
M22.2 fields and M12.2 fields obtain by generic specializations of the covers men-
tioned in §2.1 are much more heavily ramified than the exceptional PGL2(F11) spe-
cialization we are pursuing. While K1 has Galois root discriminant ∆1 ≈ 52.75, the
smallest GRD for an M22.2 field that we have found is ∆gen

1 = 2139/4833/4112/3 ≈
83.91, coming from y = −521392/27 in the cover of [Mal88]. Similarly, while K2
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has ∆2 ≈ 58.55, the smallest GRD we have seen for an M12.2 specialization is
∆gen

1 = 22/3331/181111/12 ≈ 94.84, coming from t = −53/22 [Rob16a, Table 5.2].

4.5.2. Drops from PGL2(F`) to solvable groups in §3.3. In the process of searching
for our fifty-three triples (K, g, h), we encountered other triples (K, g, h) which
satisfy all the required conditions, except that the image of the common projective
representation is not all of PGL2(F`). Two such triples are reported via the (8)’s
and (4)’s appearing in Figure 3.3. The Galois root discriminants, calculated by the
general formulas presented in §4.3, are 27/6113/4 ≈ 13.56 and 22/3193/4 ≈ 14.45.
These numbers are so small that they contradict the unconditional lower bounds for
fields of degree |PGL2(F11)| and |PGL2(F19)| respectively. In fact, the Galois group
is S4 in each case, defining polynomials being respectively x4 − 2x3 − 4x2 − 6x− 2
and x4 − x3 − 2x2 − 6x− 2.

4.5.3. Drops from PGL2(F11) to solvable groups in §4.1. As explained in §4.1, the
field K2 from Section 2 arises also from specialization of the Atkin modular polyno-
mial for ` = 11. A computer search shows at least 394 values of j which keep ram-
ification within {2, 3, 11}. The smallest seven GRDs are 20.70, 24.48, 24.77, 25.48,
29.34, 32.45, and 49.50. All of them come from degenerate specializations with
solvable Galois group. The remaining 387 points all give Galois group PGL2(F11),
with the smallest GRD being ∆2 ≈ 58.55 from K2.

4.6. Modular approaches to the tabulation problem. Let λ be a power of a
prime `. Our concluding point is that modular methods can be brought to bear
on the tabulation problem for G any subquotient of GL2(Fλ), in any transitive
permutation representation. Outside of ` = 2, modular methods do not see totally
real fields. However there are analytic lower bounds on the minimal root discri-
mininants of totally real fields in degree n. As n → ∞, these lower bounds tend
unconditionally to 4πeγ+1 ≈ 60.84 [Odl90, (2.5)]. When cutoffs are kept small
enough, totally real fields are not present. In fact, under the generalized Riemann
hypothesis, the above limit increases to 8πeγ+π/2 ≈ 215.33 [Odl90, (2.6)]; so one
does not expect to see totally real fields towards the beginning of tables at all.

In approaching this problem, it is natural to break into three cases: ` is wildly
ramified, ` is tamely ramified, and ` is unramified. In all cases, one needs to
search among eigenforms without any rationality condition imposed, so that general
characters and thus odd weights k are considered as well. As an example that
stays mostly in the context of this paper, the unique newform in Snew

6 (8) has an
irrational companion form in Snew

20 (8) for ` = 23; this yields a field with Galois
group PGL2(F23) and the small Galois root discriminant ∆ = 27/62323/24 ≈ 45.30.

For a given cutoff B, it should be easiest to obtain complete lists in the wild-at-`
case, as the levels to be considered would be very small. Next easiest would be the
tame-at-` case, as modeled by our computations throughout this paper, including
the previous paragraph; since ramification at ` is lighter, the levels to be considered
would no longer all be so small. By far the hardest, with our current theoretical
knowledge, would be the unramified-at-` case. This case requires computations
either with weight 1 or weight ` forms, both difficult for different reasons; also since
there is no ramification at `, large levels would have to be inspected.
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