
c) 

 
 

d) 

 
 

E10.11: Notice that cellulose is a long straight polymer, while amylose is curved in 

shape.  Because of it shape, cellulose forms ordered, rod-shaped crystals with tight 

packing between individual polymers - this makes the glycosidic bonds less accessible to 

cellulase enzyme.  Amylose, with its curved shape, cannot pack closely and so forms a 

disordered, amorphous solid, making its glycosidic bonds more accessible to amylose 

enzymes. (Do an internet image search for 'cellulose microfibril structure' ) 
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E10.13: 

 

 
 

 

E10.14: 

 

 
 

 

 

E10.15: 

 
 

E10.16:  

 

a) First, identify the nucleophilic amine nitrogen (in red below), the electrophilic ketone 

carbon (blue dot), and the ketone oxygen that leaves as water (green). 
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Chapter 11 
 

 

 

 

 

 

 

 

E11.1: 

 

a) carboxylic acid  b) thiol   c) water 

 

 

E11.2: 

 

 
 

 
 

E11.3: 
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E11.4: 

 

 
 

 
 

E11.5: 

 

 
 

 

E11.6: 
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E11.7: This is a transesterification reaction where the leaving group is a phenolate ion 

(phenol once it is protonated).  Because phenolate ions are much weaker bases than 

alkoxide ions (ie. phenols are stronger acids than alcohols), it follows that a phenolate 

ion/phenol is a much better leaving group than an alkoxide ion/alcohol, and this reaction 

is thermodynamically favorable. Recall that the negative charge on a phenolate oxygen is 

stablized by resonance with the aromatic ring. 

 

 

E11.8: 

 

a) 

 
 

b) A thioester (acetyl-CoA) is the acetyl group donor; an amine (on apramycin) is the 

acceptor. 

 

c) Coenzyme A 

 

 

E11.9: 

 
 

E11.10: 
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E11.11: 

 
 

 

E11.12: The other product is formate (the conjugate base of formic acid).  This reaction 

can be described as the hydrolysis of an amide. 

 

E11.13: 

 

a)  

 

 
 

b) 

 

 
 

E11.14: 
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E11.15: Base-catalyzed esterification (starting with a carboxylic and an alcohol) will not 

work. The base will simply deprotonate the carboxylic acid, and carboxylate groups are 

very unreactive towards acyl substitution reactions. 
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E11.16: This reaction would be described as the acid-catalyzed hydrolysis of an ester. 

 
 

 

 

E11.17: This is an SN2 reaction. 

 

 
 

 

E11.18: 
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E11.19: 

 

a) 

 
 

b) Methanol, CH3OH 

 

E11.20: 

 

 
 

 

E11.21: The negative charge on the conjugate base is delocalized over two adjacent 

oxygen atoms. 

 

 
 

E11.22: 

 

a)  
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Chapter 12 
 

 

 

 

 

 

E12.1:  

 

 
E12.2: 

 

 
 

E12.3: Change of configuration can only occur at carbons that are alpha to (adjacent to) a 

carbonyl or imine carbon: 

 

 
 

 

E12.4:  The double bond in the product is conjugated to the carbonyl, whereas the double 

bond in the substrate is isolated (recall that conjugation results in more stability).  Also, 

the product has a trans (E) double alkene, whereas the substrate has a cis (Z) alkene 

(recall that trans alkenes are generally more stable than cis due to steric factors). 
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E12.5: 

 

 
 

E12.6: 

 

a) 

 
 

b) 
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E12.7:  

 

a) In the fructose 1,6-bisphosphate aldolase reaction, the pro-R proton on the -carbon of 

DHAP is abstracted, then the re face of the resulting enolate -carbon attacks the re face 

of the aldehyde carbon of GAP. 

 

b) In each hypothetical reaction, the nucleophilic and electrophilic carbons are indicated.  

Both reactions result in the formation of two new chiral centers, so each hypothetical 

product could have four possible stereoisomers, for a total of eight. 

 

 
 

 

 
 

E12.8: 

 

 
 

E12.9: 
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E12.10: 
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E13.1:  

 

 
 

 

E13.2: 

 

 
 

E13.3: 
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E13.4: 

 

 
 

 

 

E13.5: 
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b)  

 
 

E13.9: 

 

 
 

E13.10: 
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E13.12: 
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Chapter 14 
 

 

 

 

 

 

E14.1: 

 

a) 

 
 

b) 

 

 
 

c) 

 

 
 

E14.2: 
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E14.3:  Below is the hypothetical reaction mechanism.  Note that the intermediate is a 

primary (not allylic) carbocation, which is highly unlikely. 
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E14.5: 
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E14.6: 

 
 

 

E14.7: The 'goop' is a polymer that forms over the course of the reaction as the 

carbocation intermediate, rather than undergoing elimination, is subjected to electrophilic 

attack by unreacted alkene. The result of this step is another carbocation, which allows 

the polymer to continue growing. 

 

 
 

E14.8: Alkenes are ranked by decreasing stability. 
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E14.9: 

 

a) 

 
 

 

b)  

 
 

 

c) 

 
 

E14.10: 
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E14.11: 

 

 
 

E14.12: 

 

a) 

 
 

b) Two factors contribute to a driving force for the reaction.  First, the reaction results in 

the formation of an aromatic ring - reactions that produce a new aromatic system are 

almost always thermodynamically favorable.  Second, decarboxylations are inherently 

energetically favorable due to the increase in entropy caused by release of a gas 

molecule.  
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E14.13:  

 
 

 

 

E14.14: IPP is the five-carbon species added to geranyl diphosphate to make the 15-

carbon farnesyl diphosphate.   
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E14.15: 

 

 
 

E14.16: 
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E14.17: Electrophilic addition to an aromatic ring would destroy it aromaticity, and thus 

is thermodynamically unfavorable. 

 

 
 

E14.18: 

 

 
 

 

E14.19: 

 

a) 

 
 

 
 

b) The hypothetical carbocation intermediate below, which lead to a meta substitution 

product, cannot be stabilized by delocalizing the positive formal charge on to the oxygen 

+ HBr
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atom.  In other words, the oxygen cannot act as a carbocation-stabilizing electron-

donating group. 

 

 
E14.20: 

 

These groups are ring-activating because they stabilize the carbocation intermediate by 

resonance: 

 
 

 

The ethyl group is ring-activating by inductive effect only (remember from section 8.3B 

that increased substitution by alkyl groups will stabilize a carbocation). 

 

 
 

These groups are ring deactivating, because the carbonyl acts as an electron withdrawing 

group, destabilizing the carbocation intermediate. 
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b) In the intermediate leading to either the ortho or para product, the positive formal 

charge can be delocalized to a carbon adjacent to the electron-withdrawing (ring-

deactivating) group, where the positive charge is highly unstable. 

 

 
 

However, in the intermediate leading to the meta product, a resonance contributor cannot 

be drawn in which the positive formal charge is adjacent to the carbonyl. Thus, the meta 

product is the most abundant. 

 

 
 

c) The carboxylic acid group is ring-deactivating and meta-directing, and indeed the new 

substituent ends up meta to the carboxylic acid.  The OH group is ring-activating and 

ortho/para directing, and indeed the new substituent ends up ortho to the OH (it cannot 

end up in the para position as that is already occupied by the carboxylic acid.   
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E14.21: 

 

 
 

 
 

 
 

 

E14.22: 

 

 
 

E14.23:  
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E14.24: 
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Chapter 15 
 

 

 

 

 

 

 

E15.1:  Zinc metal is being oxidized (it loses two electrons to become zinc cation).  

Copper cation is being reduced (it gains two electrons to become copper metal). 

 

Cu+2
(aq)  + Zn(s)  Cu(s) + Zn+2

(aq) 

 

E15.2:  One carbon changes to a higher oxidation state (gains a bond to an oxygen), 

while the other carbon changes to a lower oxidation state (gains a bond to hydrogen).  

The net oxidation change is zero, this this is not a redox reaction. 

 

 
 

E15.3: 

 

a) reduction (ketone to alcohol) 

b) reduction (carboxylic acid derivative to aldehyde) 

c) oxidation (alkane to alkene) 

d) oxidation (aldehyde to carboxylate) 

e) not redox  (one carbon is reduced -alcohol to alkane - and one is oxidized -amine to 

ketone) 
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E15.4: 

 

a) 

 

 
 

b)  

 

 
 

E15.5:  

 

a) This is a description of a hemiacetal/hemiketal forming reaction (section 10.2) 

b) This is a description of an aldol addition reaction (section 12.3) 

 

E15.6: The nicotinamide is positioned next to the re face of the ketone (the face we are 

looking in this figure). Attack of the hydride at the re face leads to an alcohol with the 

OH group pointing back into the plane of the page, which in this case corresponds to S 

configuration. 
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E15.7: The zinc cation serves as a Lewis acid, accepting electron density in the carbonyl 

bond to create a larger partial positive charge in the carbonyl carbon, which makes this 

carbon a better electrohile. 

 

E15.8: The reaction is part of a biosynthetic pathway, thus we predict that 

phosphorylated nicotinamide is used. 

 

 
 

E15.9: 

 

 
 

E15.10: The two stereoisomers do not form in an equal ratio because the starting ketone 

is part of a fused rig system, and the two faces of the ketone are not equal as is the case in 

most ketones.  It is not obvious from looking at the camphor structure, but approach of 

the reducing agent from the 'top' side is more hindered than from the 'bottom' side, and 

thus more of isomer A forms than isomer B.  1H-NMR can be used to quantify the ratio, 

because HA and HB in the two products are in different environments and have different 

chemical shifts.  Simply integrating under each of these signals gives a fairly accurate 

determination of the ratio of the two isomers. 
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E15.12:  
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E15.13: 

 

a) For every molecule of substrate that is oxidized, one molecule of NADP+ is reduced to 

NADPH.  We can determine the concentration of NADPH formed by using its extinction 

coefficient, = 6290 M-1 cm-1.   

 

 
 

So the amount of substrate oxidized is (1.53 x 10-5 M)(1 x 10-3 L) = 1.53 x 10-8 moles.   

 

b) (100 x 10-6 M) – (1.53 x 10-5 M) = 8.47 x 10-5 M = 84.7 M. 

 

c)   

 
 

E15.14: Note that the oxidized form of BME is a dimer. 

 

 
 

E15.15: 

 
 

  

6290 M-1cm-1 =
.096
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E15.16: 

 

 
 

 

E15.17: A secondary 'carbocation' has a better migratory aptitude than a primary, thus the 

right side of the ketone migrates. 

 

 
 

E15.18: Note that there is no shift step in this mechanism, unlike in the Baeyer-Villiger 

mechanism.  
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Chapter 16 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E16.1: 

 

 
 

E16.2: 

 

 
 

E16.3: Chlorine is a starting material for the reaction, but butane would be an undesired 

product which would reduce the over yield of the desired haloalkane product. 
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E16.4: Note that the intermediates are benzylic radicals, which are resonance-stabilized. 
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Chapter 17 
 

 

 

 

E17.1: 

 

 
E17.2: 
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E17.3:  

 

a) Refer to the first step of the generalized mechanism in Exercise 17.2 above: here, the 

'R2' group on the amine acceptor substrate is a hydrogen (ie. the substrate is an aldehyde). 

 

 
 

b) The carbon indicated by the arrow eventually becomes the -carbon of arginine.  Note 

that loss of the acetyl group (inside the dashed box) through amide hydrolysis will yield 

the  amino acid structure that goes on to form arginine. 

 

E17.4: 
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E17.5: 

 

 
 

 

E17.6: In general, reactions involving decarboxylation steps are essentially irreversible 

due to the large entropic driving force of the 'freeing' of a gaseous CO2 molecule. 

 

E17.7: (For the sake of clarity, curved arrows are not drawn and mechanistic steps are 

combined).  This first part of this reaction is ThDP-facilitated decarboxylation: 

 

 
 

The ThDP-stabilized carbanion intermediate then acts as a (carbon) nucleophile in a 

conjugate (Michael) addition step, followed by expulsion of the coenzyme: 
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Finally, elimination of the enol form of pyruvate occurs via an E1cb mechanism: 
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E17.8: For the sake of clarity, many of the mechanistic curved arrows are omitted. 

 

 
 

E17.9: The glycinamide ribonucleotide transformylase reaction would be expected to 

inherently more kinetically favorable because the nucleophile is a primary amine.   In 

contrast, the nucleophile in the aminoimidazole carboxamide transformylase reaction is 

an 'pyrrole-like' / 'aniline-like' nitrogen in the sense that the nitrogen lone pair electrons 

are stabilized by resonance with the carbonyl group as well as the aromatic ring (see 

section 7.5).  Therefore, this nitrogen is less basic - and less nucleophilic - than a primary 

amine.  
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E17.10: 'Product X' is glutamate, the end product of the histidine degration pathway. 
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