University of Minnesota Morris Digital Well University of Minnesota Morris Digital Well

Student Research, Papers, and Creative Works

Student Scholarship

Spring 2020

Direct Arylation Polymerization of Indophenine-Based Monomers

Sarah Severson University of Minnesota - Morris, sever534@morris.umn.edu

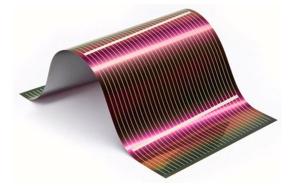
Follow this and additional works at: https://digitalcommons.morris.umn.edu/student_research

Part of the Polymer Chemistry Commons

Recommended Citation

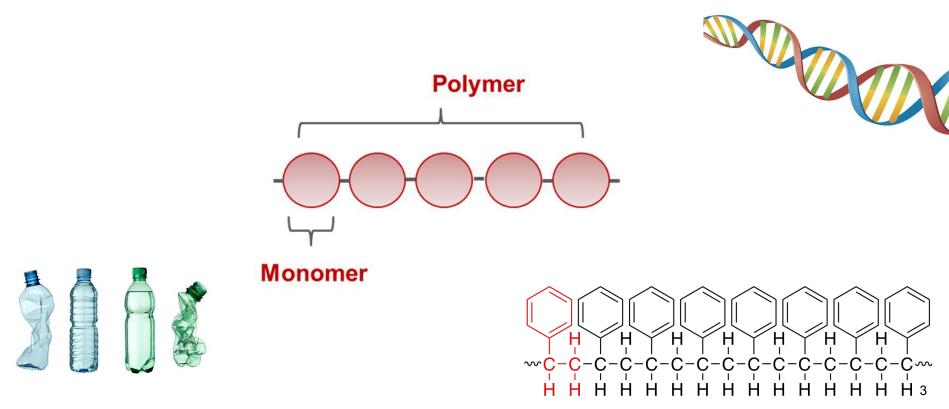
Severson, Sarah, "Direct Arylation Polymerization of Indophenine-Based Monomers" (2020). *Student Research, Papers, and Creative Works.* 1. https://digitalcommons.morris.umn.edu/student_research/1

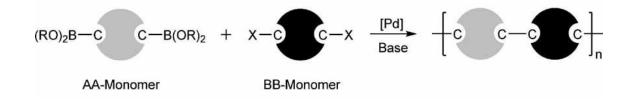
This Article is brought to you for free and open access by the Student Scholarship at University of Minnesota Morris Digital Well. It has been accepted for inclusion in Student Research, Papers, and Creative Works by an authorized administrator of University of Minnesota Morris Digital Well. For more information, please contact skulann@morris.umn.edu.


Direct Arylation Polymerization of Indophenine-Based Monomers

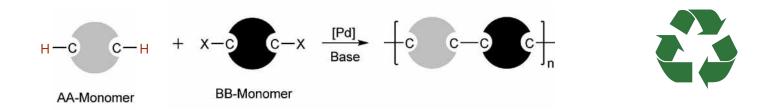
Sarah Severson Spring 2020 UROP Under the direction of Dr. Ted M. Pappenfus

Organic redox materials


- Low-cost carbon materials
- Unique electronic properties
- High tunability/flexibility

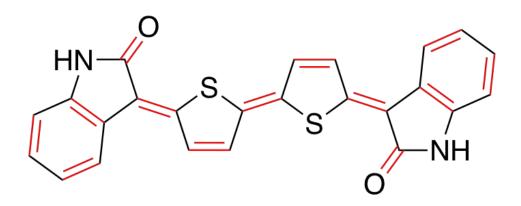


What do all these devices have in common?

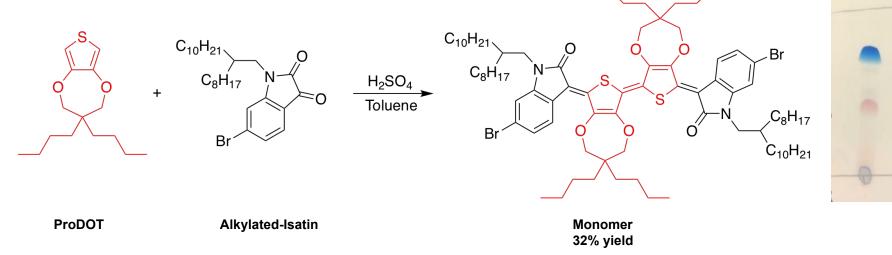


Polymerization methods

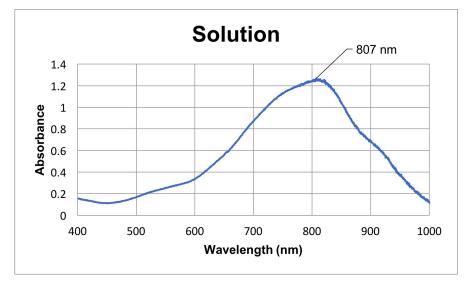
Step-growth polymerization via transition metal-catalyzed coupling (example: Stille)



Step-growth polymerization via direct arylation polymerization (DArP)

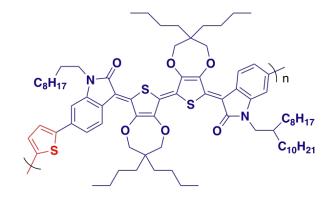

Indophenine as a monomer for polymerization

- History:
 - **1879:** indophenine was discovered by Alfred Baeyer
 - **1882:** indophenine is made from thiophene (Meyer et al.)
 - **1924**: correct structure identified (Heller et al.)
- Indophenine shows promise for electronic applications due to its...
 - Quinoidal structure
 - Conjugated character
 - Synthetic modifiability



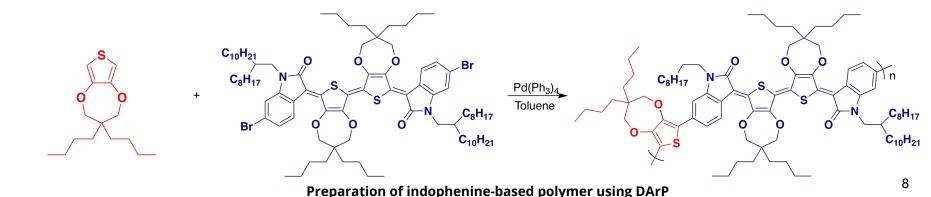
Indophenine-based monomer

- Modified with ProDOT substituents to enhance solubility and eliminate isomerism (Pappenfus et al.)
- Facile synthesis with acid catalyst (Cava et al.)
- Easily polymerized via Stille coupling



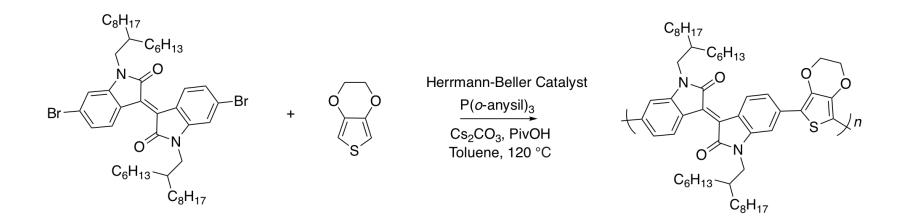
Stille copolymer

λmax (solution) = 807 nm λmax (film) = 771 nm *Bandgap = 1.2 eV*


Mw	7000 g/mol	
Mn	5222	
PDI	1.34	

Stille Copolymer 95% yield

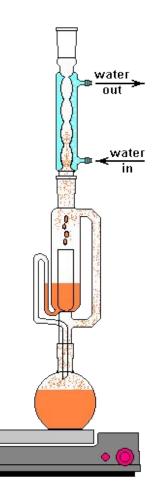
A greener route: DArP


- Requires the functionalization of only one coupling site (halide)
- Other coupling site is a C-H bond that is "activated"
- DArP with indophenines has not been previously reported

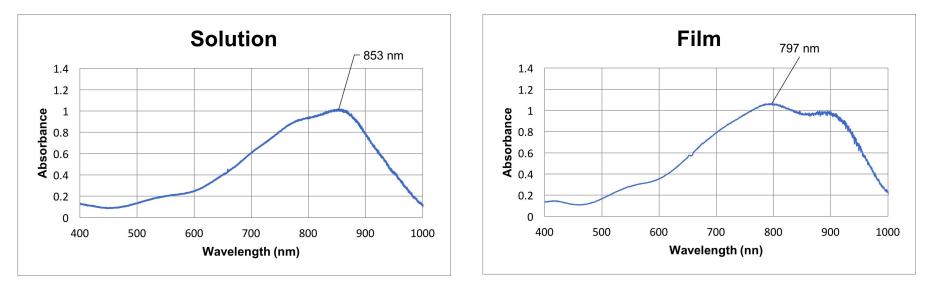
Related DArP polymers

• Grenier et al. (2015) synthesized a similar polymer via DArP with:

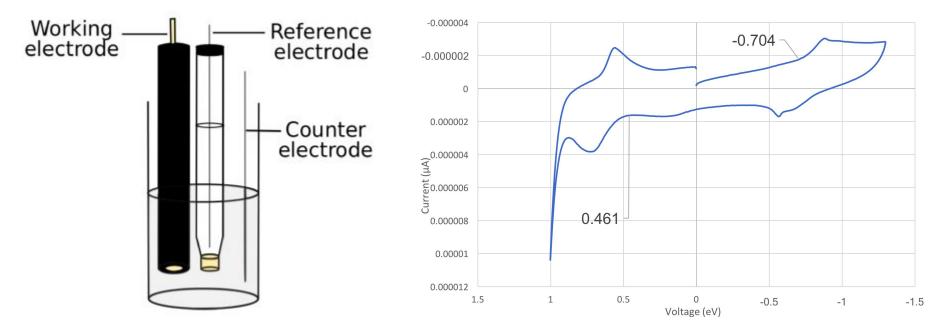
• 95% yield, *Mw* = 210,000 g/mol, PDI = 2.31



DArP polymer: purification


Methanol Acetone Hexanes (33%) Chloroform (62%) Combined yield of 95%

Mw	6047	
Mn	5287	
PDI	1.13	


DArP polymer: UV-Vis

λmax = 853 nm

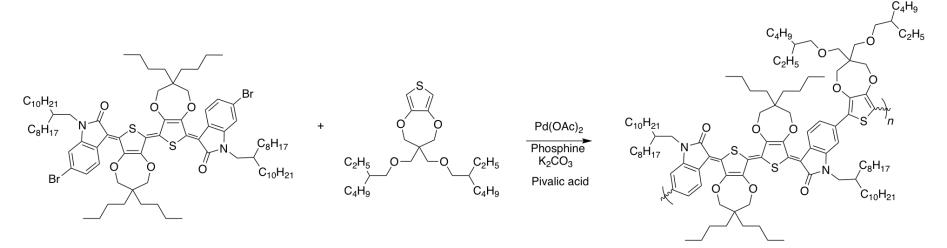
λmax = 797 nm Band gap = 1.22 eV

Cyclic voltammetry of DArP polymer

Electronic Band Gap = 1.17 eV

DArP versus Stille Coupling

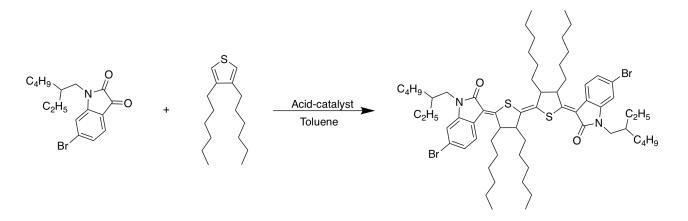
	Stille polymer	DArP polymer
Yield	95%	95%
Solution λmax	807 nm	853 nm
Solution Bandgap	1.2 eV	1.2 eV
Mw	7000 g/mol	6047 g/mol
Mn	5222 g/mol	5287 g/mol
PDI	1.34	1.13

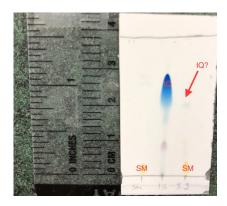

Direct arylation polymerization is a viable route to produce indophenine polymers with desirable electronic properties.

Optimization

- Improving molecular weight by:
 - Enhancing solubility to prevent premature polymerization termination
 - Using already-synthesized alternative monomers with improved solubility
 - Designing new monomers with enhanced solubility
- Increasing sustainability by using alternative solvents
- Exploring new catalytic systems

Enhancing solubility: thiophene monomer

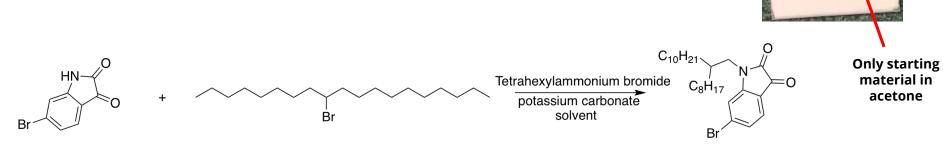

- Replace ProDOT monomer with a more soluble thiophene monomer
- Used optimized conditions proposed by Meyers et al.



No visible color change occurred and TLC indicated formation of no product.

Enhancing solubility: indophenine monomer

• Design a new indohenine monomer with hexyl substituents rather than ProDOT subsitutents.



No visible color change occurred and TLC indicated formation of almost no product. Steric and/or electronic effects likely make the reaction less favorable.

Enhancing sustainability: solvent

- A key starting material is an alkylated isatin.
- The conventional reaction uses DMF as a solvent, which...
 - Complicates purification
 - Reduces sustainability
- Attempt same reaction with acetone as solvent

In DMF, the reaction formed the desired product in 60% yield. In acetone, no product formed.

Conclusions and Future Work

- Direct arylation polymerization is a sustainable and effective route toward indophenine polymers with desirable electronic properties
- Further optimization needed to:
 - Increase the molecular weight of indophenine polymers
 - Enhance the solubility of indophenine monomers and polymers
 - Improve the sustainability of the synthesis of starting materials
- Future work includes:
 - Theoretical calculations to understand energy barriers of failed reactions
 - Continued exploration of more soluble indophenine monomers
 - Continued testing of different catalytic systems

Acknowledgements

- Dr. Ted M. Pappenfus
- University of Minnesota Undergraduate Research Opportunities Program
- UROP facilitators

References

- 1. Baeyer, A. Untersuchungen über die Gruppe des Indigblaus. *Ber. Dtsch. Chem. Ges.* **1879**, *12*, 1309–1319.
- 2. Meyer, V. Ber. Dtsch. Chem. Ges. 1882, 15, 2893–2894
- 3. Heller, G. Zur Konstitution des Indophenins. Angew. Chem. 1924, 37, 1017–103.
- 4. Tormos, G. V.; Belmore, K. A.; Cava, M. P. The Indophenine Reaction Revisited: Properties of a Soluble Dialkyl Derivative, J. Am. Chem. Soc. **1993**, *115*, 11512–11515.
- 5. Pappenfus, T. M.; Helmin, A. J.; Wilcox, W. D.; Severson, S. M.; Janzen, D. E. ProDOT-Assisted Isomerically Pure Indophenines. *J. Org. Chem.* **2019**, *84*, 11253-11257.
- 6. Grenier, F.; Aich, B. R.; Lai, Y. Y.; Guerette, M.; Holmes, A. B.; Tao, Ye.; Wong, W. W. H.; Leclerc, M. *Chem. Mater.* **2015**, 27, 2137-2143.
- 7. Ludwiczak, M.; Majchrazak, M.; Bayda, M.; Marciniak, Br.; Kubicki, M.; Marciniec, Bo. J. Organomet. Chem. 2014, 750, 150-161.