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Abstract. Halo displays, in particular the 22◦ halo, have been
captured in long time series of images obtained from total
sky imagers (TSIs) at various Atmospheric Radiation Mea-
surement (ARM) sites. Halo displays form if smooth-faced
hexagonal ice crystals are present in the optical path. We de-
scribe an image analysis algorithm for long time series of
TSI images which scores images with respect to the pres-
ence of 22◦ halos. Each image is assigned an ice halo score
(IHS) for 22◦ halos, as well as a photographic sky type (PST),
which differentiates cirrostratus (PST-CS), partially cloudy
(PST-PCL), cloudy (PST-CLD), or clear (PST-CLR) within
a near-solar image analysis area. The color-resolved radial
brightness behavior of the near-solar region is used to de-
fine the discriminant properties used to classify photographic
sky type and assign an ice halo score. The scoring is based
on the tools of multivariate Gaussian analysis applied to a
standardized sun-centered image produced from the raw TSI
image, following a series of calibrations, rotation, and co-
ordinate transformation. The algorithm is trained based on
a training set for each class of images. We present test re-
sults on halo observations and photographic sky type for the
first 4 months of the year 2018, for TSI images obtained
at the Southern Great Plains (SGP) ARM site. A detailed
comparison of visual and algorithm scores for the month of
March 2018 shows that the algorithm is about 90 % reliable
in discriminating the four photographic sky types and iden-
tifies 86 % of all visual halos correctly. Numerous instances
of halo appearances were identified for the period January
through April 2018, with persistence times between 5 and
220 min. Varying by month, we found that between 9 % and
22 % of cirrostratus skies exhibited a full or partial 22◦ halo.

1 Introduction

Modeling and predicting the Earth’s climate is a challenge
for physical science, even more so in light of the already
observable changes in Earth’s climate system (Fasullo and
Balmaseda, 2014; Fasullo et al., 2016; IPCC, 2013, 2014).
Global circulation models (GCMs) describe the atmosphere
in terms of a radiative dynamic equilibrium. The Earth re-
ceives solar shortwave (SW) radiation and discards energy
back into space in the form of terrestrial long-wave (LW)
radiation. The radiation balance of the Earth has been sub-
ject to much study and discussion (Trenberth et al., 2014;
Fasullo and Kiehl, 2009; Kandel and Viollier, 2010; Tren-
berth et al., 2015). Global circulation models describe the in-
fluence of various parts of the Earth system in terms of radia-
tive forcing factors (Kandel and Viollier, 2010; Kollias et al.,
2007). Clouds may restrict the SW flux reaching the surface,
but they also influence the LW emissions back into space.
While low stratus and cumulus clouds exhibit a net negative
radiative forcing, high cirroform clouds are more varied in
their radiative response, varying between negative and posi-
tive forcing depending on time of day, season, and geograph-
ical location (Campbell et al., 2016). The Fifth Assessment
Report from the IPCC in 2013 (IPCC, 2013) identified ice
and mixed clouds as major contributors to the low confidence
level into the aerosol and cloud radiative forcing. The uncer-
tainty in the aerosol and cloud forcing has implications for
the confidence in and for the variance of the predictions of
global circulation models (Fu et al., 2002; Trenberth et al.,
2015). Closing the radiation budget of the Earth hinges on re-
liable cloud data (Hammer et al., 2017; Schwartz et al., 2014;
Knobelspiesse et al., 2015; Waliser et al., 2009). Tradition-
ally, cloud radiative forcing is modeled using a cloud frac-
tion based on sky images (Kennedy et al., 2016; Kollias et
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al., 2007; Schwartz et al., 2014). Cirrostratus clouds, lacking
sharp outlines, pose a challenge to this approach (Schwartz
et al., 2014). The uncertainty about the role of cirrus in the
global energy balance has been attributed to limited obser-
vational data concerning their temporal and spatial distribu-
tion, as well as their microphysics (Waliser et al., 2009). Cir-
roform clouds, at altitudes between 5000 and 12 000 m, are
effective LW absorbers. Cloud particle sizes can range from
a few microns to even centimeter sizes (Cziczo and Froyd,
2014; Heymsfield et al., 2013). Methods to probe cirrus cloud
particles directly involve aircraft sampling (Heymsfield et al.,
2013) and mountainside observations (Hammer et al., 2015).
Ground- and satellite-based indirect radar and lidar measure-
ments (Hammer et al., 2015; Hong et al., 2016; Tian et al.,
2010) give reliable data on altitudes, optical depths, and par-
ticle phase. Even combined, these methods leave gaps in the
data for spatial and temporal composition of ice clouds. The
analysis of halo displays as captured by long-term total sky
imagers may provide further insight and allow one to close
some of the gaps.

Optical scattering behavior is influenced by the types of
ice particles, which may be present in very many forms, in-
cluding crystalline hexagonal habits in the form of plates,
pencils and prisms, hollow columns, bullets and bullet
rosettes, and amorphous ice pellets, fragments, rimed crys-
tals, and others (Bailey and Hallett, 2009; Baran, 2009; Yang
et al., 2015). Only ice particles with a simple crystal habit
and smooth surfaces can lead to halo displays (Um and Mc-
Farquhar, 2015; van Diedenhoven, 2014). Usually, this will
be the hexagonal prism habit, which we can find in plates,
columns, bullet rosettes, pencil crystals, etc. If no preferred
orientation exists, a clear telltale sign for their presence is
the 22◦ halo around a light source in the sky, usually sun
or moon. More symmetry in the particle orientations will
add additional halo display features such as parhelia, upper
tangent arc, circumscribed halo, and others (Greenler, 1980;
Tape and Moilanen, 2006). As shown in theoretical stud-
ies (van Diedenhoven, 2014; Yang et al., 2015), halos form
in particular if the ice crystals exhibit smooth surfaces. In
that case, the forward-scattered intensity is much more pro-
nounced as in cases of rough surfaces, even if a crystal habit
is present. If many of the ice particles are amorphous in na-
ture, or did not form under conditions of crystal growth –
for example by freezing from supercooled droplets, or by
riming – the forward scattering pattern will be weaker and
similar to what we see for liquid droplets: a white scatter-
ing disk surrounding the sun, but no halo. In turn, roughness
and asymmetry of ice crystals influence the magnitude of
backscattered solar radiation, thus influencing the radiative
effect of cirrus clouds (van Diedenhoven, 2016). If the parti-
cles in the cirroform cloud are very small, e.g., a few microns
(Sassen, 1991), diffraction will lead to a corona. We believe
that a systematic observation of the optical scattering proper-
ties adds information to our data on cirrus microphysics and
cirrus radiative properties. The authors observed the sky at

the University of Minnesota Morris, using an all-sky camera,
through a 5-month period in 2015, and found an abundance
of halo features.

There are a few studies pursuing a similar line of inquiry
(Forster et al., 2017; Sassen et al., 2003). The study by Sassen
et al. (2003) showed a prevalence of the 22◦ halo, full in 6 %
and partial in 37.3 % of cirrus periods, based on a 10-year
photographic and lidar record of midlatitude cirrus clouds,
also providing data on parhelia, upper tangent arcs, and other
halo display features, as well as coronas. The photographic
record was taken in Utah and based on 20 min observation
intervals; cirrus identification was supported by lidar. The
authors found an interesting variability in halo displays, re-
lated to geographical air mass origin, and suggest that optical
displays may serve as tracers of the cloud microphysics in-
volved. Forster et al. (2017) used a sun-tracking camera sys-
tem to observe halo display details over the course of several
months in Munich, Germany, and a multiweek campaign in
the Netherlands in November 2014. A carefully calibrated
camera system provided high-resolution images, for which
a halo detection algorithm was presented, based on a deci-
sion tree and random forest classifiers. Ceilometer data and
cloud temperature measurements from radiosonde measure-
ments were used to identify cirrus clouds. The authors report
25 % of all cirrus clouds also produced halo displays, in par-
ticular in the sky segments located above the sun. The frac-
tion of smooth crystals necessary for halo display appearance
is at a minimum 10 % for columns, and 40 % for plates, based
on an analysis of scattering phase functions for single scatter-
ing events (van Diedenhoven, 2014). While this establishes a
lower boundary, it is correct to say that the observability of
a halo display allows one to conclude that smooth crystalline
ice particles are present and single scattering events domi-
nate. The consideration of the percentage of cirrus clouds that
display optical halo features allows therefore, upon further
study, inferences about the microphysical properties of the
cloud. This raises interest in examining existing long-term
records of sky images.

Long-term records of sky images have been accumulated
in multiple global sites. The Office of Science in the US De-
partment of Energy has maintained Atmospheric Radiation
Measurement (ARM) sites. These sites, among other instru-
ments, contain a total sky imager (TSI) and have produced
multiyear records of sky images. In this paper, we introduce a
computational method to analyze these long-term records for
the presence of halo displays in the images. We are introduc-
ing an algorithm to analyze long sequences of TSI images.
The algorithm produces a time record of near-solar photo-
graphic sky type (PST), differentiated as cirrostratus (PST-
CS), partly cloudy (PST-PCL), cloudy (PST-CLD), and clear
(PST-CLR) sky types, as well as assigns an ice halo score
(IHS). The resolution and distortion of the TSI images re-
strict the halo search to the common 22◦ halo. Other halo
features, such as parhelia, can occasionally be seen in a TSI
image but often are too weak or too small to reliably discrimi-

Atmos. Meas. Tech., 12, 4241–4259, 2019 www.atmos-meas-tech.net/12/4241/2019/



S. Boyd et al.: Analysis algorithm for sky type and ice halo recognition 4243

nate them from clouds and or 22◦ halos. If present they would
be classified by this algorithm as part of a 22◦ halo. Coronas
are obscured by the shadow strip and often also by overexpo-
sure in the near-solar area of the image. The algorithm offers
an efficient method of finding 22◦ halo incidences, full or
partial. Since ARM sites also have collected records of li-
dar and radiometric data, the TSI halo algorithm is intended
to be compared to other instrumental records from the same
locations and times. This will be addressed in future work.

Section 1 describes the TSI data used in this work. Sec-
tion 2 presents the details of the image analysis algorithm,
including subsections on algorithm goals, image preparation,
and sky type and halo scoring. Section 3 applies the algo-
rithm to the TSI data record of the first 4 months of 2018 and
examines the effectiveness and types of data available for this
interval. Summary and outlook are given in Sect. 4.

2 TSI images

Images used in this paper were obtained from Atmospheric
Research Measurement (ARM) Climate Research Facilities
in three different locations: Eastern North Atlantic (ENA)
Graciosa Island, Azores, Portugal; North Slope of Alaska
(NSA) Central Facility, Barrow, AK; and Southern Great
Plains (SGP) Central Facility, Lamont, OK (ARM, 2000).
The ranges and dates vary by location, as listed in Table 1.
The images were taken with total sky imagers, which consist
of a camera directed downward toward a convex mirror to
view the whole sky from zenith to horizon. A sun-tracking
shadow band is used to block the sun, which covers a strip of
sky from zenith to horizon. Images were recorded every 30 s.
The longest series was taken at the Southern Great Plains
location, reaching back to July 2000. The images, in JPEG
format, have been taken continuously during daytime. Aside
from nighttime and polar night, there are some additional
gaps in the data, perhaps due to instrument failure or other
causes. Camera quality, exposure, mirror reflectance, image
resolution, and image orientation varies over time as well as
by location. For example, an image from SGP taken in 2018
has a size of 488 pixels by 640 pixels. The short dimension
limits the radius of the view circle to at most 240 pixels.
A pixel close to the center of the view circle corresponds
to an angular sky section 2.8◦ wide and 0.24◦ tall. At SGP,
the solar position never reaches this point. Close to the hori-
zon, 1-pixel averages a sky section that is 0.24◦ wide and
1.24◦ tall. Best resolution is achieved at zenith angle 45◦, in
which case every pixel represents a sky region of 0.33◦ by
0.33◦. The perspective distortion is largest for sky segments
close to the horizon due to perspective distortions of the sky.
We used a sampling of 80 images taken from across the TSI
record and across all available years to initiate the training
set (ARM, 2000). This included images visually classified
from the images as photographic sky types CS, PCL, CLD,
CLR, and halo-bearing. Descriptions of the PST are provided

in Table 2. The 80 sample images were used to develop the
algorithm and define a suitable set of characteristic proper-
ties for PST score (PSTS) and IHS. This set will be referred
to as seed images since they also initialize the master table
described below.

3 Algorithm

3.1 Goal and strategy

The algorithm aims to process very large numbers of images
and return information about the presence of 22◦ halos, as
well as the general sky conditions. The program is written
in C++ and uses the OpenCV library for image process-
ing. If given a list of image directories, the algorithm pro-
ceeds to sequentially import, process, and score TSI images
compared to training sets gleaned from representative im-
ages for each scored class. We define four classes of photo-
graphic sky types, listed in Table 2, and a halo class. The fac-
tors that determine these choices are discussed in Sect. 2.3.1
and 2.3.3. The algorithm assigns a numeric photographic sky
type score (PSTS) and a numeric ice halo score. For all im-
age classes, sets of discriminant image properties have been
defined which differ between 10 distinct properties for PST
classes and 31 distinct properties for the halo class.

Multivariate analysis is one of the standard methods in im-
age analysis, applied in a wide variety of problems. Numer-
ous text books provide introductions to this method in a the-
oretical background (Harris, 1975; Gnanadesikan, 1977) as
well as in an application-oriented manner (Alpaydin, 2014;
Flury, 1988). A set of Np discriminant properties of the im-
age is chosen, selected to be characteristic for a particular sky
type or the presence of a halo. Let this set of properties be the
observation vector

X = {xi}
Np
i . (1)

For each class, a training set is created. The training set
is a set of Nt observation vectors for images that have been
visually assigned to the class. A training set defines an el-
lipsoidal centroid in the property space of X, centered at the
mean observation vector

M = {µi}
Np
i=1, (2)

µi =
1
Nt

∑Nt

k=1
xik. (3)

The centroid’s extent is described by the Np×Np covari-
ance matrix

6 = (X−M)(X−M)T =

 σ11 σ12 . . .

σ21 σ22 . . .

. . . . . . . . .

 , (4)

with elements

σij =
1
Nt

∑Nt

k=1
xikxjk −µiµj . (5)
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Table 1. TSI data set properties. Seed images for the algorithm were taken from all three locations. Data source: ARM (2000).

Location Dates and times (UTC) Image interval Resolution (pixels)

Southern Great Plains 2 Jul 2000 0:35:00 15 Aug 2011 01:17:30 30 s 288× 352
36◦ 36′18′′ N, 97◦ 29′6′′W 15 Aug 2011 22:17:30 19 Apr 2018 01:02:00 30 s 480× 640

North Slope of Alaska 25 Apr 2006 21:44:00 2 Nov 2010 21:31:00 30 s 288× 352
71◦ 19′22.8′′ N, 156◦ 36′32.4′′W 9 Mar 2011 01:08:30 11 Apr 2018 18:59:30 30 s 480× 640

Eastern North Atlantic 1 Oct 2013 08:13:00 28 May 2018 21:04:00 30 s 480× 640
39◦ 5′29.76′′ N, 28◦ 1′32.52′′W

Table 2. Descriptions of the photographic sky types (PST).

Sky type Visual description

Cirrostratus PST-CS Muted blue, no sharp cloud outlines; solar position clearly visible, bright scattering disk
or halo may be present; changes are gradual and slow (several minutes).

Partly cloudy PST-PCL Variable sky with sharply outlined stratocumulus or altocumulus; variations between sky
quadrants; sun may be obscured; changes are abrupt and fast (less than 2 min).

Cloudy PST-CLD Sun is obscured; low brightness; low blue intensity values; stratus, nimbostratus, altostra-
tus, or cumulonimbus; changes occur slowly (order of hours).

Clear PST-CLR Blue, cloud-free sky; sun clearly visible and no bright scattering disk around it; changes
are slow (order of hours).

No data N/A This may occur at low sun positions for the bottom quadrants of the LSM, or due to
overexposure in the near-solar region of the image; it is the default at night.

The observation vector of any further image X′ will then be
referenced with M and 6 in the form of a multivariate nor-
mal distribution:

F = C0 exp
(
−

1
2

(
X′−M

)T
6−1 (X′−M

))
, (6)

in which the quadratic form in the exponent is known as the
square of the Mahalanobis distance in property space. The
closer an image places to the centroid of a class, the higher
its score Eq. (6) will be. The Mahalanobis distance is ex-
pressed in units of standard deviations, eliminating the influ-
ence of the units of the discriminant properties and the need
for weights. It is interesting to note that the average Maha-
lanobis distance for a class is equal to the number of discrim-
inant properties. The prefactor C0 in Eq. (6) is different for
the photographic sky type scores and the ice halo score since
the dimensionality of the observation vectors for these two
class types is different. It is chosen to place the values for F
into a convenient number range. The value F for each class
of images is akin to a continuous numerical probability that
the image is located close to the centroid of this particular
class.

The algorithm is outlined in Fig. 1, together with the re-
spective references to this text. Both M and 6−1 are com-
puted a priori from the training sets via Eqs. (2) and (4). In
order to score a time series of property vectors X, one only

needs to import M and 6−1 for each class once at the start
of the analysis run. The training sets for each class of images
are started using the set of 80 images described in Sect. 1 and
are expanded as needed. This allows one to continually train
the algorithm toward improvement of scoring. This basic al-
gorithm structure is used on a standardized local sky map,
described in Sect. 2.2. The details of PSTS and IHS will be
described separately below. The code and accessories can be
accessed at a GitHub repository (Boyd et al., 2018).

3.2 Image preparations and local sky map (LSM)

The goal of the image preparation is to create a local sky map
(LSM) centered at the sun, in easy-to-use coordinates, after
a minimal color calibration and after extraneous image parts
have been masked. The image preparations include the fol-
lowing steps: (1) a color correction, (2) an alignment calibra-
tion, (3) a removal of the perspective distortion, (4) masking
and marking of the solar position, and (5) rotation and crop
to create a local sky map. Some sample steps in the image
preparation are illustrated in Fig. 2. The figure includes the
original image, the image after preparation step (4), and the
LSM after preparation step (5). The two sample images in
Fig. 2 were taken at the Southern Great Plains ARM site in
March and April 2018 (SGP, 2018). One of the images con-
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Figure 1. Flow chart of the algorithm for the analysis of TSI images.

tains a solar 22◦ halo, and the other one is a partly cloudy sky
without any halo indications.

Step (1) is a color correction. Both original images in
Fig. 2 have a slightly green tinge, which is typical for im-
ages from the TSI at this location, in particular after an in-
strument update in 2010. This is noticeable in particular if
images are compared to earlier TSI data from the same loca-
tion, and it can become a problem for the planned analysis,
especially for the use of relative color values. Since the algo-
rithm is intended for multiple TSI locations and records taken
over a long time, including device changes, it is necessary to
consider the fact that no two camera devices have exactly the
same color response, even if of the same type (Ilie and Welch,
2005). The color calibration used in this algorithm is based
on sampling of clear-sky color channels to define weighed
scaling factors for a whole series of images. Every pixel in
a TSI image exhibits a value between 0 and 255 for each
of the three color channels blue (B), green (G), and red (R).

The color values represent the intensity of the color channel
registered for the particular pixel, varying between 0 (no in-
tensity) and 255 (brightest possible). In a discolored series,
measurements of BGR were taken in clear-sky images (in-
dexed PST-CLR), and a scaling factor and weight for each
color channel were defined based on this information:

βB = 1.00

βG =
Gref

GCLR
×

BCLR

Bref

βR =
Rref

RCLR
×

BCLR

Bref


with(Bref,Gref,Rref)

= (180, 120, 85) . (7)

The reference values are based on color values for clear sky
images from the TSI records listed in Table 1. Near-zenith,
clear blue sky provides a reproducible color reference in all
the locations. Once these color-scaling factors were deter-
mined for a series, every image was then tinted by generating
an average color

(
B,G,R

)
for a small near-zenith sky sample

www.atmos-meas-tech.net/12/4241/2019/ Atmos. Meas. Tech., 12, 4241–4259, 2019
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Figure 2. Two examples for image preparation. The left column
develops an image from SGP 17 April 2018 17:45:00 UTC, and
the right image was taken on SGP 3 April 2018 19:09:30 UTC. (a,
b) Original image; (c, d) image after color correction, distortion
removal, masking of horizon and equipment, and sun mark were
applied; (e, f) final local sky map with sun at center and a width of
about 80 LSM units.

and applying

B′ =
[
B+α

(
βBB−B

)]
G′ =

[
G+α

(
βGG−G

)]
R′ =

[
B+α

(
βRR−R

)] (8)

to each color channel and pixel, respectively, followed by a
simple scaling to preserve the total brightness of the pixel
I =
√

B2+G2+R2. For the series SGP 2018, these factors
were β = (0.9,0.78,1) and α = 0.4. The coefficient α regu-
lates the strength of the tinting such that α = 0 leads to no

tint, and α = 1 produces an image of a single color. This tint-
ing is minimal, and linear color behavior is a reasonable as-
sumption.

Step (2) is a stretch-and-shift process that identifies the
horizon circle. Occasionally, a slight misalignment of the
camera and mirror axis leads to an elliptical appearance of
the sky image. A calibration is necessary in such cases to
stretch the visible horizon ellipse to a circular shape and to
center the horizon circle as close to the zenith as possible.
A north–south alignment correction may also have to be ap-
plied. Both calibrations will ensure successful identification
of the solar position in the next step. These calibrations be-
come necessary if the TSI was not perfectly aligned in the
field. They need to be readjusted after any disturbances oc-
curred to the instrument, such as storms, snow, and instru-
ment maintenance. Typically, this can be once every few
months, or sometimes several times per month. It is impor-
tant to check the calibrations regularly by sampling across
the series whether the solar position was correctly identified
after calibration. In addition, the horizon circle is placed at a
zenith angle smaller than 90◦, often between 85 and 79◦, to
eliminate the strong view distortion close to the horizon and,
in some cases, objects present in the view. As explained ear-
lier, the zenith angle resolution per pixel exceeds 1.2◦ close
to the horizon. The information value for a solar zenith angle
(SZA) larger than 80◦ is diminished. These pixels are ex-
cluded from the analysis. Practically, this is a very thin ring
cut from the original image but does help eliminate false sig-
nals at low sun angles. The current process requires one to
find these calibrations for a small sampling of images in a
series and to then apply them to all images in the series.

Step (3) removes the perspective distortion. The projection
of the sky onto the plane of an image introduces a perspec-
tive distortion, as described in Long et al. (2006). A coordi-
nate transformation is performed to represent the sky within
the horizon circle in terms of azimuth and zenith angle. The
azimuth is the same in both projections. Zenith angle θ re-
lates to the radial distance r in the original image from the
center of the horizon circle as r = R sinθ . While R is not de-
termined, image horizon radius RH and horizon zenith angle
θH provide one known point to allow for proportional scal-
ing. The coordinate transformation represents the sky circle
in a way in which radial distance from zenith sz scales with
zenith angle θ as

sz =
RH

sinθH
× θ. (9)

Long et al. (2006) discuss a further image distortion intro-
duced by the particulars of the optics of the system of convex
mirror and camera. The authors give an empirical correction
curve for the SZA transformation. This correction is small; it
has been omitted in this algorithm. One of the visible effects
of this transformation concerns 22◦ halos: in the original TSI
image, a halo appears as a horizontal ellipse; after the trans-
formation it will have a shape closer to a circle.

Atmos. Meas. Tech., 12, 4241–4259, 2019 www.atmos-meas-tech.net/12/4241/2019/



S. Boyd et al.: Analysis algorithm for sky type and ice halo recognition 4247

Figure 3. Layout of the local sky map (LSM). The LSM is divided
into four quadrants, named according to their position as TR – top
right, BR – bottom right, BL – bottom left, and TL – top left. The
RAI is the radial analysis interval for which PST and IHS properties
are evaluated. The approximate position of the halo maximum is
sketched in light gray. Shadow strip and camera are excluded from
analysis.

Step (4) identifies the solar position and masks nonsky de-
tails. The position of the sun is marked based on the geo-
graphical position of the TSI and the Universal Time (UTC)
of the image. Extraneous details, such as the shadow strip,
the area outside the horizon circle, the camera, and the cam-
era mount, are masked. Figure 2c and d show the image pro-
duced by all these adjustments up to step (4). Since often the
position of the sun is detectable in the image, the marked sun
position serves to refine the calibrations described above.

In step (5), the standardized local sky map is created. A
sketch of the layout of the LSM is provided in Fig. 3. The
LSM provides a standard sky section, centered at the sun,
oriented with the horizon at the bottom, and presented in the
same units for all possible TSI images (independent on the
resolution of the original). Units of measurement in the LSM
are closely related to angular degrees but do not match per-
fectly due to a zenith angle dependence of the azimuth arc
length. The LSM is generated by rotating and cropping the
image from step (4) to approximately within 40◦ of the sun,
with the sun at its center.

The side length of the LSM in pixels scales with the pre-
viously determined horizon radius RH in pixels and the cor-
responding maximum zenith angle θH in ◦ as

wLSM (pixels)=
RH(pixels)
θH(degrees)

× 40
◦

. (10)

Equation (10) provides a unit transformation between
pixel positions and LSM units. For a TSI image of size
480 pixels× 640 pixels, the LSM will have a size of approx-
imately 240 pixels× 240 pixels. For the earlier, smaller TSI
images, the LSM has a size of approximately 140 pixels×
140 pixels. The unit scaling includes the calibration choices
RH and θH; hence, there is a slight variation in LSM side
lengths. We eliminate the influence of the LSM sizes by per-
forming all algorithm operations in standardized LSM units,
which roughly correspond to angles of 1◦. In other words,
all LSMs are equivalent to each other in terms of their LSM
units but not in terms of pixel positions. At θ = 45◦, the arc
length of azimuth angle φ is equivalent to the arc length
of θ of same size; however, if θ > 45◦, the azimuth arc is
stretched, requiring an additional horizontal compression to
ensure equivalence of horizontal and vertical angular units.
The LSM is divided into quadrants, shown in Fig. 3, which
are analyzed and classified separately by the algorithm de-
scribed in the next section.

3.3 Computing photographic sky type and halo
properties

3.3.1 Average radial intensity (ARI)

Halos, as sun-centered circles, are creating a brightness sig-
nal at a scattering angle of 22◦. We found it useful to analyze
the radial brightness I (s), with s being the radial distance
from the sun in the image plane, similar to the halo detec-
tion algorithm by Forster et al. (2017). The term intensity
refers to the color values of any of the color channels and
varies between 0 and 255. There is a physical reason for us-
ing I (s) in PST and halo assessment. The presence of scat-
tering centers in the atmosphere influences the properties of
sky brightness in the near-sun sky section. A very clear atmo-
sphere, for example, exhibits an exponential decline, but with
relatively high intensity values in the blue channel due to
Rayleigh scattering. In the case of cirrostratus, the increased
forward scattering of larger particles (in this case ice crys-
tals) leads to a decreased gradient of radial brightness, with
more evenly distributed intensities in the red, green, and blue
channels. In a partially cloudy sky, we would find sharp vari-
ations in I (s), varying with color channel. An overcast sky,
on the other hand, may exhibit no decline in radial brightness
and will generally have low intensity values across all color
channels. A sketch of the LSM is given in Fig. 3. The radial
intensity I (s) is computed using the color intensity values of
the image (0 to 255), separated by color channel. The LSM
is divided into four quadrants: TR represents top right, BR
represents bottom right, BL represents bottom left, and TL
represents top left, analyzed separately for quadrant scores,
and then recombined for the image scores. The division into
quarters allows one to accommodate partial halos, low so-
lar positions, and the influence of low clouds in partially ob-
structing the view to cirrostratus. The algorithm uses various
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properties of I (s) to assign numeric PSTS and IHS, as de-
tailed below.

The average radial intensity I (s) is computed as an aver-
age over pixels at constant radial distance s from the sun. Due
to the low resolution of the LSM, and due to some noise in
the data, we average I (s) over a circular ribbon with a width
of 4 pixels, centered at s. Computing I (s) over a thin ribbon
addresses issues encountered when averaging over a circle
in a coarse square grid, allowing continuity where otherwise
pixelation may interrupt the line of the circle. Figure 4 shows
the radial intensity of the red channel (R) in the bottom right
quadrants of the LSMs featured in Fig. 2. Panel a includes
I (s), a linear fit, as well as the running average I 6, plotted
versus radial distance s. The running average is taken as the
average of I (s) over a width of 6 LSM units centered at s:

I 6 (s)=
1
N

∑s+3 LSM units
s−3 LSM units

I (s) . (11)

The clear-sky image exhibits a lower red intensity overall
than the halo image. The halo presents as a brightness fluc-
tuation at about 21 LSM units. The analysis of I (s) is under-
taken in an interval between 15 and 26 LSM units, called the
radial analysis interval (RAI). The RAI is marked in Fig. 3.
A linear fit yields a slope and intercept value used for the
PSTS. We define the radial intensity deviation as

η(s)= I (s)− I 6 (s) . (12)

Panels b in Fig. 4 show η(s) for both situations. The details
of the halo signal in η(s) contribute in particular to the com-
putation of the IHS.

3.3.2 Photographic sky type (PST)

The training sets for the properties of I (s) were started for
the set of 80 seed images mentioned in Sect. 1. Twenty im-
ages for each sky type were divided further by sky quadrants,
yielding between 60 and 80 property sets for each sky type to
initiate the training sets. Some quadrants were eliminated by
near-horizon sun positions. The training quadrants were used
to apprise the utility of I (s) in making sky type assignments,
with focus on the radial analysis interval between 15 and 26
LSM units. The 10 image properties used to compute the nu-
meric PSTS are listed in Table 3. Also listed are the compo-
nents of M together with their standard deviations, computed
from a later and more complete version of the training sets.
The 10 image properties include the slope and intercept of the
line fit to I (s) for each color channel, where the slope charac-
terizes a general brightness gradient, and the intercept gives
access the overall brightness in the RAI. The line fit alone
will not allow one to differentiate partially cloudy skies from
other sky types. However, the presence of sharply outlined
clouds leads to a larger variation in intensity values, even for
the same radial distance from the sun. The areal standard de-
viation (ASD) is an average of the standard deviation of I (s)
for each radial distance s, averaged over all radii separated

by color channel. To set apart clear skies, the average color
ratio (ACR) in the analysis area is computed as

ACR=
B2

GR
. (13)

In Fig. 5, the PST property set is represented graphically, in-
cluding means, standard deviations, and extreme values as
observed for the completed training set. Clearly, no single
property alone will suffice to assign a PST reliably. There is
overlap in the extreme ranges. Relations between the color
channels are influential as well. We are using the mechanism
described in Sect. 2.1, Eqs. (1) through (6). The training sets
for each class are collected in a master table, where M and
6−1 for each PST are computed. As a new image is pro-
cessed, and its PST property vector X is computed for each
sky quadrant. Subsequently, a numeric score is computed for
each sky type using Eq. (6). The coefficient C0 in Eq. (6)
for the PSTS computation is chosen as 103, which places a
rough separator of order 1 between images that match closely
a particular sky type and those which do not. The raw values
of Fimage in Eq. (6) vary greatly even between similar look-
ing images; hence the PSTS is computed as a relative con-
tribution between 0 % and 100 % for each sky type and each
quadrant. For the PST-CS score this would mean

PST_CS=
FCS

FCS+FPCL+FCLD+FCLR
× 100% (14)

and equivalent for all other PST classes. A single image
quadrant can carry scores of 45 % for PST-CS, 35 % for PST-
PCL, and 20 % for PST-CLD. The dominant sky type then
is PST-CS for this quadrant, since it contributes the largest
score. The PSTS for the image is assigned as the average
over all quadrants. If the raw scores F for all PSTs were
smaller than 10−8, the quadrant is classified as N/A. It sim-
ply means that its properties are not close to any of the PST
categories. Such conditions may include overexposed quad-
rants, near-horizon sun positions, a bird sitting on the mirror,
and other conditions that produce images very different from
the PST sought after. Also classified as N/A are quadrants in
which the average radial intensity lies above 253 (overexpo-
sure) or contains a large fraction of horizon (bottom quad-
rants in low sun positions). A 1 d sample of sky type data is
shown in Fig. 6, for 10 March 2018. The day was chosen for
its variability, including periods of each of the PST, as well
as clearly visible halo periods. The central panel tracks the
PSTS for all photographic sky types through the day, taken
for all four LSM quadrants combined. It is important to note
that the PST only can be representative of the section of sky
near to the sun. Some of the late-day images in Fig. 6 con-
tain quadrants that were eliminated due to overexposure. The
white scattering disk around the sun near the horizon does
not allow for analysis, which is exemplified in the sample
image at 22:53:00 UTC included in Fig. 6. For large portions
of the day, the dominant sky types have been classified as
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Figure 4. Average radial intensity of the red channel is shown versus radial distance s, measured in LSM units, for the two images of Fig. 2,
halo at left. (a) includes the average intensity I (s), a linear fit, and the running average I6 (s) as averaged over a width of 6 LSM units.
(b) shows the radial intensity deviation η(s). The halo signal is visible as a minimum at 17 LSM units, followed by a maximum at 21 LSM
units in the left column.

Table 3. Discriminant properties used to classify the photographic sky type. Averages and standard deviations for the training set of each class
are listed. All units are based on color intensity values and LSM units. The number of records for each sky type is indicated in parentheses.

PST property PST-CS (155) PST-PCL (99) PST-CLD (93) PST-CLR (96)

Slope a B −3.0± 1.5 B −1.6± 2.2 B −0.7± 1.7 B −2.3± 1.6
G −3.2± 1.7 G −1.6± 2.2 G −0.7± 1.7 G −2.8± 1.6
R −3.6± 1.9 R −1.9± 2.6 R −0.8± 1.8 R −2.8± 1.7

Intercept b B 276± 34 B 248± 46 B 193± 40 B 248± 43
G 271± 33 G 240± 53 G 195± 44 G 233± 47
R 255± 48 R 228± 65 R 179± 47 R 184± 47

ASD1 B 13.1± 5.3 B 20.5± 7.0 B 14.2± 5.0 B 15.4± 5.2
G 15.0± 6.0 G 22.9± 7.7 G 15.0± 5.1 G 16.3± 5.3
R 16.6± 6.6 R 25.5± 8.1 R 15.8± 5.6 R 14.8± 5.7

ACR2 1.33± 0.36 1.24± 0.32 1.08± 0.12 2.07± 0.11

1 Areal standard deviation. 2 Average color ratio.

PST-CS and PST-PCL, and the images corroborate this. The
14:36:00 image shows a thicker cloud cover, and the algo-
rithm correctly responds by increasing the PST-CLD score.
At 21:00:00, the algorithm indicates an increased PST-CLR
score, consistent with the visual inspection of the TSI im-
age at the time. Given the simplicity and physical relevance
of this photographic sky type assessment, we believe that a
radial scattering analysis around the sun has the potential

to address some of the challenges that have been encoun-
tered using a simple photographic cloud fraction in radiation
modeling (Calbó and Sabburg, 2008; Ghonima et al., 2012;
Kollias et al., 2007). The variation in radial intensity gradi-
ent as scatterers are present along the optical path can pro-
vide an alternative assessment for the presence of cirroform
clouds, solving problems of classifying near-solar pixels us-
ing a color ratio and/or intensity value only (Kennedy et al.,
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Figure 5. Photographic sky type properties. Slope and intercept (a, b) for the radial fit; areal standard deviation (ASD) of brightness (c);
average color ratio (ACR) (d). Sky types were assigned visually.

2016; Long et al., 2006). That will be a direction to discuss
and explore in the future.

3.3.3 Ice halo score (IHS)

The 22◦ halo is a signal in the image that can be obscured
by many other image features, including low clouds, partial
clearings, inhomogeneous cirrostratus, regions of overexpo-
sure, and near-horizon distortions. The appearances of 22◦

halos span a wide variety of sky conditions, ranging from
almost clear skies to overcast altostratus skies, with the ma-
jority of halo phenomena appearing in cirrostratus skies. The
challenge to extract the halo from such a wide variety of sky
conditions is formidable. While the statistical approach de-
scribed in Sect. 2.1 will again form the core of the approach,
the challenge shifts to defining a set of suitable discriminat-
ing properties of the image. In addition to the properties used
in sky type assignment, the halo scoring must seek features
in η(s), Eq. (12), that are unique in halo images, such as
a minimum followed by a maximum at halo distance from
the sun. The absolute values of η(s) are dependent on vari-
ous image conditions. Due to the variety of sky conditions,
and variations in calibration and image quality, the values
of maximum and minimum alone are not sufficient to re-
liably conclude the presence of a halo. We have found in-
stances in which η(s) does exhibit the halo maximum but

does not dip to negative values first. However, the upslope–
crest–downslope sequence is consistently present in all cases
of 22◦ halo. The halo search is undertaken for a sequence
of upslope–crest–downslope in terms of radial positions and
range of slopes. All three characteristics present clearly in the
derivative of the η(s), the radial intensity deviation derivative
η′(s). This derivative of the discrete series η(s) is approxi-
mated numerically by a secant method as

η′i ≈
ηi+1− ηi−1

si+1− si−1
. (15)

In Fig. 7, both η(s) and η′(s) are shown for the bottom-
right quadrant of the green channel of the halo image in
Fig. 2. The sequence of radial halo markers is illustrated in
Fig. 7. The algorithm computes η′(s) and seeks the positive
maximum and the subsequent negative minimum, plus the ra-
dial position of the sign change between them. This produces
a sequence of radial locations sup, smax, and sdown which ba-
sically outline the halo bump in width and location. There
are often multiple maxima of η′(s) contained in the RAI. A
halo image typically has fewer maxima than a nonhalo image
but of larger amplitude. Therefore, the number of maxima
as well as the upslope value η′up and downslope derivative
η′down join the set of halo indicators. If multiple maxima are
found, the dominant range is used. Lastly, a radial sequence
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Figure 6. The 1 d example for PSTS and IHS (SGP 10 March 2018). Sample TSI images are included. The middle panel shows PSTS versus
time of day (N/A excluded). Bottom panel shows the IHS versus time; w = 3.5 min. All times in UTC.

Table 4. Discriminant properties used for the ice halo score. Averages and standard deviations for a training set of 188 quadrant records are
listed. All units are based on color intensity values and LSM units.

IHS property B G R

Slope a −3.3± 1.5 −3.3± 1.6 −3.8± 1.8
Intercept b 279± 35 278± 37 268± 45
ASD 12.6± 4.7 14.8± 6.0 16.2± 6.4
Maximum upslope η′up 2.1± 1.3 2.1± 1.4 2.5± 1.6
Maximum downslope η′down −1.6± 1.0 −1.6± 1.0 −1.8± 1.1
Upslope location sup 17.5± 1.9 17.8± 2.3 17.5± 2.1
Maximum location smax 18.9± 1.9 19.1± 2.3 18.8± 2.1
Downslope location sdown 20.0± 2.1 20.2± 2.4 19.9± 2.2
Number of maxima nmax 2.4 2.6 2.5
BGR consistency σBGR

(
sup
)
= 0.8 σBGR (smax)= 0.8 σBGR (sdown)= 0.9

ACR 1.2± 0.3
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Figure 7. Radial markers used in halo scoring. The data belong to the green channel of the TSI image from SGP, 17 April 2018; see Fig. 2.
(a) shows the radial intensity deviation η(s); (b) shows its derivative η′ (s). Units are color value units (0 to 255) for the intensity and LSM
units for the radial distance. The sequence of radial locations used in halo scoring is indicated, as well as the interpretation of the up- and
downslope markers.

should be consistent across all three color channels. The res-
olution of the TSI images only allows one to resolve 0.4 to
1.2◦ with certainty; in addition, variations in calibration and
SZA do influence deviations from the expected 22◦ position.
The separation of colors observed in a 22◦ halo display is not
resolved with statistical significance; therefore this was not
used as a criterion for halo detection. The standard deviation
of all three radial positions across the three color channels
was added to the halo scoring set of properties. We arrive at
a set of 31 properties for the computation of the IHS, listed
in Table 4, together with their means and standard deviations.
The mean value vector M and the inverse covariance matrix
6−1 are computed in the master table and then imported by
the halo searching algorithm for use in Eq. (6). The coeffi-
cient C0 in Eq. (6) is arbitrary. In the IHS computation, a
value of 106 was chosen for C0, which places a rough sep-
arator of order 1 between image quadrants that do have a
halo and those which do not. While the scoring of individual
images works very well for true halo images, it does trig-
ger the occasional halo score for images that do not exhibit
a halo. This may occur due to inhomogeneities in a broken
cloud cover or other isolated circumstances. These false halo
scores often occur on isolated images. We utilize the factor of
residence time of a halo to address this. In a 30 s binned se-
ries of TSI images, the halo will appear usually in a sequence
of subsequent images, often in the order of minutes or even
hours. We added a Gaussian broadening to the time series of

halo scores Fi, taken at times ti with a broadening w:

IHS(t)=
ti=t+3w∑
ti=t−3w

F (ti)exp

[
−
(ti − t)

2

2w2

]
. (16)

This de-emphasizes isolated instances and enforces se-
quences of halo scores, even if they individually exhibit weak
signals or gaps. This procedure reduced the false halo iden-
tifications significantly. Just as for the PSTS, the training set
for the IHS in the master table is being complemented as
more images are analyzed. The raw halo score F is com-
puted for each of the four quadrants of an individual image;
their average is used to assign the raw score for the whole im-
age. The broadening in Eq. (16) was chosen as w = 7 images
throughout, corresponding to 3.5 min. In Fig. 6, the clear 22◦

halo between 19:00 and 20:00 UTC produces a strong IHS.
There are a few weaker halo signals, and upon inspection of
the images we find that these correspond to partial halos (like
at 17:07:00), or halos in a more variable sky.

4 Results for January through April 2018

We chose the record of the month of March 2018 at the
SGP location for a thorough comparison of algorithm re-
sults to visual image inspection, as well as an expansion of
the training set. The complete month TSI record, starting at
1 March 2018 00:00:00 UTC and ending at 31 March 2018
23:59:30 UTC, contains 44 057 images. Only 31 398 were
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classifiable in terms of their PST. Exclusions occur due to
large SZA, overexposure, or low PSTS.

The algorithm and the current training set (starting with
the 80 sets discussed above) are used to assign an image IHS
and a set of four image PSTS, averaging over the quadrant
IHS and PSTS values. Both of these score sets are contin-
uous numerical values, resulting in a time-resolved scoring
for all PSTS and IHS values as shown in Fig. 6, across the
month of March. In order to manage comparison to a visual
classification of these images, and to learn how both score
sets behave in terms of numerical values, the following two
procedural steps are added in the postprocessing: (1) for the
PST, the sky type with the maximum contribution is taken as
the image sky type; (2) an IHS discriminator is used to assign
a halo/no halo designator to an image. This IHS discrimina-
tor is arbitrary, not part of the image analysis algorithm, and
dependent on factors such as w and C0, the quality of the
calibration, and the quality and relevance of the training set.
The algorithm assigns a continuous IHS to every image as a
number varying between 10−10 and 106, with fluid continu-
ous change in consecutive images. The decision on the value
of the discriminator is based on the behavior of the timeline.
Halo images generate a significant peak above a population
of low-level peaks. The discriminator is placed to exclude
about 75 % of the low peaks when analyzing for a count of
halo incidences. Our testing, minimizing false negatives and
maximizing correct positives, places it at around 4000 for the
month of March.

Visual image classification for so many images poses a
considerable challenge, which we approached in the form of
an iteration. For each of the 31 d of March, an observer as-
signed sky classifications to segments of the day by inspect-
ing the day series as an animation. This can easily be done
by using an image viewer and continuously scrolling through
the series. Then, the day would be subjected to the algorithm.
The sections of the record in which visual and algorithm dif-
fered were inspected again, at which point either the visual
assessment was adjusted or samples of the misclassified im-
ages were added to the training set. Adjustment to visual
classifications often occurred at the fringes of a transition.
For example, when a sky transitions from cirrostratus to alto-
stratus to stratus, the transitions are not sharp. The observer
sets an image as the point in which the sky moved from PST-
CS to PST-CLD, but the criteria in the algorithm would still
indicate PST-CS. This can affect up to a hundred images at
transition times, which then were reclassified. On the other
hand, if a clearly visible halo was missed by the algorithm
in the form of a low numerical IHS, a couple of new lines
were added to the training set, selected from the few hundred
quadrant cases in which this particular halo had scored low.
The IHS discriminator is not part of the algorithm itself, but
follows in the postprocessing from the general behavior of
the IHS across the month. It is a tool to allow a comparison
but not an ultimate answer to halo strength. Halo strength
could be assessed by the IHS. After each change to the train-

Figure 8. PSTS and IHS versus time for TSI images from SGP
March 2018. Left panel shows the PSTS. Right panel: IHS broad-
ening w = 3.5 min.

ing set, the algorithm would be repeated, and recalibrations
to the visual record, as well as to the training set, were made.
The process was repeated several times until no more gains
in accuracy were observed. The training sets at the end of
this process contained between 93 and 188 property records,
of which up to 50 % were taken from March 2018. Com-
pared to the number 31 398 of classifiable images in March
(after exclusion of high-SZA, overexposure, and other), and
considering that each of these images contributes up to four
individual property sets, the number of training sets is indeed
diminutive. These adjustments were done by SB.

The resulting time lines for PSTS and IHS for the month
of March are plotted in Fig. 8. Many of the images exhibit
strong indicators for multiple PST. The largest PSTS is used
to assign a PST to an image. As expected, the high halo
scores coincide with strong PST-CS signals. Noteworthy is
also that there are a number of days in which PST-CS does
not carry a 22◦ halo, indicated by very small IHS values.
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Table 5. Algorithm versus visual classifications for SGP March 2018. (a) shows the percentage of visual assignments corresponding to
algorithm assignments; (b) shows the percentage of algorithm assignments and how they distribute among the visual assignments. For
example, 88 % of all visual CS skies are classified as PST-CS by the algorithm, but only 86 % of all algorithm PST-CS skies also identify as
visual CS. Agreement combinations are shown in bold. A halo was assigned to an image if IHS > 4000.

(a) Percentage of visually assigned sky type which
corresponds to algorithm-assigned PST

CS PCL CLD CLR

N % N % N % N %

PST-CS 6675 88 683 11 38 1 397 4
PST-PCL 182 2 5513 86 176 3 191 2
PST-CLD 61 1 47 1 6129 97 0 0
PST-CLR 641 8 136 2 0 0 10 529 95

N/A 12 597 (40 % of all images)

Percentage of visually assigned
halos which corresponds to
the algorithm assignment

22◦ halo No 22◦ halo

N % N %

22◦ halo 1996 85 272 1
No 22◦ halo 349 15 41 409 99

(b) Percentage of algorithm-assigned PST which corresponds
to a visually assigned sky type

CS PCL CLD CLR

N % N % N % N %

PST-CS 6675 86 683 9 38 0 397 5
PST-PCL 182 3 5513 91 176 3 191 4
PST-CLD 61 1 47 1 6129 98 0 0
PST-CLR 641 6 136 1 0 0 10 529 93

N/A 12 597 (40 % of all images)

Percentage of algorithm-assigned
assigned halos which corresponds

to a visual assignment

22◦ halo No 22◦ halo

N % N %

22◦ halo 1996 88 272 12
No 22◦ halo 349 1 41 409 99

In Table 5, visual and algorithm results of the sky type as-
signments are cross-listed for SGP March 2018. It is worth
reminding the reader that PSTs are assigned only for the ra-
dial analysis interval indicated in Fig. 3. Table 5a lists the
percentage of visually assigned sky types that correspond to
the algorithm-assigned PST; Table 5b lists the percentage of
algorithm-assigned PSTs that also have been identified as a
visual sky type. For example, the algorithm correctly identi-
fies 88 % of all visual CS skies as PST-CS (part A); 86 %
of the images classified as PST-CS by the algorithm also
have been visually classified as CS (part B). PST-CLD is re-
liably identified by the algorithm. A small percentage (3 %)

of visual PST-CLD skies trigger a PST-PCL signal, mostly
due to inhomogeneities in cloud cover. The algorithm clas-
sifies 95 % of all visual PST-CLR skies correctly. Differen-
tiating between PST-CS and PST-PCL is successful. How-
ever, these two sky types pose some difficulties. For exam-
ple, 8.5 % if visual PST-CS skies scored a PST-CLR signal
and 10 % of images classified as PST-CS were visually as-
signed a PST-PCL sky type. In these cases we often found
that the algorithm assignment might be more persuasive than
the visual assignment – a visual assignment is a subjective
call and open to interpretation of the observer. Combined
with image distortion and resolution limits, it is quite pos-

Atmos. Meas. Tech., 12, 4241–4259, 2019 www.atmos-meas-tech.net/12/4241/2019/



S. Boyd et al.: Analysis algorithm for sky type and ice halo recognition 4255

sible that the visual assignments carry a considerable uncer-
tainty. Some of the visual PST-CS skies, for example, present
to the eye as PST-CLR but reveal the movement of a thin
cirrostratus layer if viewed in the context of time develop-
ment (animation). Similarly, cirrostratus may present as an
inhomogeneous layer in transition skies, triggering a PST-
PCL assessment in the algorithm. Low solar positions are
prone to larger image distortion, which may lead to misin-
terpretation. It is worth noting that every image quadrant re-
ceives a PSTS for all classes of PST. In cases of mismatch,
we often find that the two sky types at conflict both con-
tribute significantly to the PSTS of the image quadrant. If
SZA > 68◦, no PST assignments were made. Most of the 397
PST-CLR images that presented as PST-CS to the algorithm
were taken at very low sun, with a significant overexposure
disk in near-solar position. Table 5 also lists a comparison
of visual halo identifications with the algorithm scores. Ac-
cording to this assessment, the algorithm correctly calls 85 %
of visual halo images while not diagnosing 15 % of them. On
the other hand, 12 % of all halo signals do not correspond to a
halo in the image. One can improve the correct identification
rate by lowering the cutoff score, at the cost of an increase
in the signal from false identifications. Balancing the false
positive and false negatives yields a reliability of about 12 %
to 14 %. Some of the false negatives arise from altocumu-
lus skies, in which the outlines of cloudlets may trigger halo
signals by their distribution and size. These are very difficult
to discriminate from visual halo images. Some images were
flagged with an IHS by the algorithm, and the presence of
a weak halo revealed itself only after secondary and tertiary
inspection of the image. Caution is advised in relying heavily
on visual classifications of TSI images alone. The visual sky
type and halo assignments themselves have an uncertainty
due to subjectivity. While it is easy to distinguish a partially
cloudy sky from a clear sky, this may become difficult for
the difference between thick cirrostratus and stratus. Their
visual appearances may be quite similar. Sometimes, an as-
signment can be made in the context of temporal changes.
Some clear-appearing skies reveal a thin cirrostratus pres-
ence if viewed in a time series instead of in an individual
image. It is therefore a future necessity to combine the vi-
sual assignments of sky types with lidar data for altitude,
optical thickness, and depolarization measurements to make
an accurate assessment of the efficacy of the PST identifica-
tion, following closely the processes described by Sassen et
al. (2003) and Forster et al. (2017).

We applied the algorithm to the TSI record for the first
4 months of 2018 for the SGP ARM site. It is worth not-
ing that this paper is not intended to present a complete ex-
ploration of the ARM record concerning 22◦ halos. We are,
however, including a demonstration of capacity of the algo-
rithm presented here. Table 6 summarizes our findings. It
lists the percentages for the PST by month. A portion of the
images has not been assigned with a PSTS. The conditions
under which this occurs have been described earlier and in-

clude near-horizon sun positions, images with overexposure
in the RAI, and images for which the raw PSTS for each sky
type was numerically too low to be considered a reliable as-
sessment. Therefore, PST percentages refer only to all identi-
fied images. January and March exhibited a large fraction of
clear skies. February was dominated by cloudy skies, while
April registered a high percentage of PST-CS. Only a partial
month of images was available for April. Cloud types depend
strongly on the synoptic situation. That means that no further
conclusions should be made from these data without expand-
ing the data set. The 22◦ halo statistics in Table 6 lists data
on the 22◦ halo, including duration, number of incidents, and
data on partial halos. The partial halo data are based on the
individual quadrant IHS for an image, while the image score
is used for duration and incidence information. The number
of separate halo incidences counts sequences of images for
which the IHS did not fall below the cutoff value of 4000.
While it is worth noting that the number of incidences lies in
the order of magnitude of the number of days in a month, it
is certain that the halo instances are not evenly distributed.
Figure 8 does demonstrate this behavior. However, even on
a day of persistent cirrostratus with 22◦ halo, interruptions
of its visibility can occur. Sometimes low stratocumulus may
obscure the view of the halo, and sometimes the cirrus layer
is not homogeneous. This may lead to a large number of sep-
arate halo incidences in a short time, while none are counted
at other times. The mean duration of a halo incident lies be-
tween 16 and 34 min, depending on month. We listed the
maximum duration found in each month as well. The longest
halo display in the time period occurred in April 2018, with
nearly 3.5 h. Mean values are easily skewed by a few long-
lasting displays. Figure 9 shows the distribution of 22◦ halo
durations for the 4 months. The most common duration of
a 22◦ halo lies between 5 and 10 min, followed by 10 to
15 min. Due to the time broadening applied via Eq. (16), the
display time cannot be resolved below 3 min. We consider
the fraction of images in which a halo was registering. That
marker varied between 3.9 % for January and 9.4 % for April.
In accord with findings in Sassen et al. (2003), we find a low
amount of halo display activity in January. However, this may
be influenced by the large SZA in January. The closer the sun
to the horizon, the more TSI images have been excluded from
the analysis, and the stronger the influence of distortion.

Occasionally, only partial halos will be seen, depending on
positioning of the cirroform clouds and on obstruction by low
clouds. The division of the LSM into quadrants allows one
to assess the possibility of fractional halos, as indicated in
Table 6. The overwhelming portion of halo incidences shows
full or 75 % halo. This means that, in four or three of the
quadrants, the IHS has exceeded its minimum cutoff. Quarter
halos have only rarely registered in the algorithm. Many of
the half halos can be found for images taken close to sunrise
or sunset. That explains their relative frequency in January
and February.
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Table 6. PST and 22◦ halo formations during the months of January through April 2018 (SGP). Percentages are with respect to all classifiable
images. Times are in UTC.

Jan 2018 Feb 2018 Mar 2018 Apr 2018∗

Total number of images 36 632 36 011 44 057 27 741
Number with valid PST 21 238 23 604 31 398 20 436
Begin date of record 1 Jan 2018 13:47:00 1 Feb 2018 13:36:00 1 Mar 2018 0:00:00 1 Apr 2018 0:00:00
End date of record 31 Jan 2018 23:50:00 28 Feb 2018 23:59:30 31 Mar 2018 23:59:30 19 Apr 2018 1:02:00

PS
T

PST-CS 20 % 18 % 25 % 34 %
PST-PCL 24 % 24 % 19 % 19 %
PST-CLD 11 % 33 % 20 % 25 %
PST-CLR 45 % 25 % 36 % 22 %

22
◦

ha
lo

s

Number of separate 26 45 34 46
halo incidents
Mean duration 16 min 22 min 34 min 21 min
Maximum duration 62 min 136 min 171 min 208 min
Total halo time 411 min 998 min 1160 min 963 min
% halo instances with
4/4 22◦ halo 29 % 42 % 77 % 42 %
1/3 22◦ halo 38 % 31 % 13 % 40 %
1/2 22◦ halo 32 % 25 % 10 % 18 %
1/4 22◦ halo 1 % 1 % 0 % 0 %

R
el

at
io

ns

% halo instances of all
sky type instances
PST-CS 9 % 16 % 18 % 22 %
PST-PCL 6 % 7 % 6 % 9 %
PST-CLD 4 % 5 % 10 % 12 %
PST-CLR 0 % 0 % 0 % 0 %
All PSTSs 3.9 % 8.5 % 7.4 % 9.4 %
% sky type of all
halo instances
PST-CS 49 % 60 % 87 % 78 %
PST-PCL 42 % 33 % 9 % 14 %
PST-CLD 2 % 5 % 3 % 5 %
PST-CLR 0 % 0 % 0 % 0 %
N/A 7 % 2 % 1 % 3 %

∗ Incomplete month.

Figure 9. Distribution of observed 22◦ halo durations for the first 4 months of 2018 at the SGP ARM site.
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We started the project with the goal to find information on
cirrostratus composition, in particular with respect to assess-
ments of variation of smooth versus rough crystals. Forster et
al. (2017) discuss that the necessary fraction of smooth crys-
tals for a halo appearance lies between 10 % and 40 %. The
bottom part of Table 6 investigates the relation between sky
type and 22◦ halo incidences. The first set of data in the “Re-
lations” section of Table 6 gives the fraction of each sky type,
as it produced a 22◦ halo incident. For example, in January
we found that 9 % of PST-CS were accompanied by a 22◦

halo. In the data for April, this fraction increased to 22 % of
PST-CS. We also have registered halos for a portion of PST-
PCL and for PST-CLD. No halos have been registered in any
of the PST-CLRs. The April data are consistent with the ob-
servations of Forster et al. (2017), who report a 22◦ halo for
25 % of all cirrus clouds for a 2.5-year photographic record
taken in Munich, Germany. Differences exist, however, in
that the Forster observations verified ice cloud with lidar and
IR measurements, while this current record compares to a
photographically assigned sky type. We must consider rea-
sons for the PST-PCL and PST-CLD halo incidences. Upon
random sampling of these combinations we find the follow-
ing: the PST-PCL indicator has been assigned to images that
have a highly varied cirroform sky, including halo appear-
ances. In a few instances, low clouds triggered the PST-PCL
indicator; however, a cirroform layer at higher altitude still
contributed a halo score above the threshold. Many of the
halo scores in PST-CLD skies belong to images with an over-
cast appearance; however, they most likely belong to a thick-
ening and lowering cirro- or altostratus as is often found in
warm front approaches. These are not false scores but condi-
tioned by the limitations of the PST classification. The sec-
ond set of numbers in Table 6 shows the fraction of all ha-
los associated with the various PST. In January, 49 % of all
halo incidences occurred in PST-CS skies, while in March
this number was 87 %. As for the overall frequency of halo
displays, we can refer to Table 6, in which the observed halo
frequency for all PST combined is listed. It varies from 3.9 %
in January 2018 to 9.4 % in April 2018. The closest compar-
ison is the number given by Sassen et al. (2003), who report
a full 22◦ halo at 6 % of the 10-year record of hourly images,
while any halo feature was observed at 37.3 % of the time.
For such a comparison, Forster et al. (2017) is cautioning
that a statistic like this may strongly depend on the binning
interval.

With this image analysis algorithm used on TSI images to
identify the PST and the appearance of 22◦ halos, the next
useful and logical step will be to relate these data to other in-
strument records: lidar for altitude, particle density, and par-
ticle phase (solid or liquid), as well as photometric measure-
ments to glean information on radiative flux. ARM sites have
accumulated such instrumental data. The algorithm proposed
here will make such data investigation possible.

Finally, it is worth discussing the general approach of the
TSI algorithm in comparison to the halo detection algorithm

developed by Forster et al. (2017). Both algorithms utilize
features found in the radial intensity I (s), such as the se-
quence of minimum–maximum at the expected radial posi-
tions in order to find halos in an image. The random forest
classifier approach described in Forster et al. (2017) is a ma-
chine learning approach that arrives at a binary conclusion
for an image in the form of halo/no halo. Their algorithm
was trained on a visually classified set of images in order to
construct a suitable decision tree. In addition to 22◦ halos,
the Forster algorithm also identifies parhelia and other halo
display features in images taken by a high-resolution, sun-
tracking halo camera. The algorithm presented here for TSI
data must work with a much less specialized set of images,
notably of lower resolution. It does not characterize halos in a
binary decision but rather assigns a continuous ice halo score
to an image, in addition to photographic sky type scores for
four different types of sky conditions. Similar to the Forster
algorithm, the TSI algorithm also was trained on a visually
classified set of images. For the algorithm presented here,
further training sets are easily added. Both algorithms have
overlap. The TSI algorithm makes extensive use of the radial
brightness gradient (slope) for the sky type assignments. The
relation of this gradient to the physical presence of scatterers
along the optical path makes this an attractive approach.

5 Summary

ARM sites have produced long-term records of sky images.
We developed an algorithm that assigns sky type and halo
scores to long-term series of TSI images with the goal of us-
ing these long-term image records to provide supporting in-
formation on the presence of smooth, hexagonal ice crystals
in cirrus clouds from observations of 22◦ halos. We described
this algorithm in this paper, including the image preparation
to generate a standardized image section centered at the sun,
called the local sky map (LSM). A multivariate analysis of
selected LSM properties, as supported by a master table, al-
lows the assignment of scores with respect to photographic
sky type and 22◦ halo presence in the near-solar section of
the sky. In particular, we focus on the properties associated
with the radial brightness behavior around the sun. Physi-
cally, the number and type of scattering centers in the atmo-
sphere do influence the radial brightness gradient, thus giving
us access to an assessment of cloud type and cloud cover. The
brightness fluctuation associated with the 22◦ halo provides
a further set of properties specific to the presence of a 22◦

halo. We analyze all four quadrants adjacent to the sun sep-
arately and then combine the scores into a raw image score.
For the ice halo score, we also apply a Gaussian broaden-
ing across the time series. The algorithm has been found to
be about 90 % in agreement with the visually assigned sky
type and 85 % in agreement with the visually identified ice
halo score. The application to the first 4 months of the TSI
records from the SGP ARM site indicates periods of halo
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displays, with a most common duration of about 5 to 10 min
but lasting up to 3 h. It allowed us to identify the fraction of
PST-CS skies that do produce halo displays, as well as find
such data for other PST. In the future, the algorithm will be
applied to deliver 22◦ halo data for the long-term TSI records
accumulated in various geographical locations of ARM sites,
as well as allow further investigation into correlations with
other instrumental records from those sites. In particular, li-
dar data for altitude and optical thickness measurements, as
well as depolarization analysis, will be a useful combination
with this photographic halo display record. It is reasonable to
expect that the reference set for sky type determination will
improve with the support of lidar data. The method described
here may be suitable to expand to other types of sky analysis
on TSI images.
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