
Scholarly Horizons: University of Minnesota, Morris Scholarly Horizons: University of Minnesota, Morris 

Undergraduate Journal Undergraduate Journal 

Volume 3 Issue 1 Article 3 

February 2016 

Concurrent Compaction in JVM Garbage Collection Concurrent Compaction in JVM Garbage Collection 

Jacob P. Opdahl 
University of Minnesota, Morris 

Follow this and additional works at: https://digitalcommons.morris.umn.edu/horizons 

 Part of the OS and Networks Commons 

Recommended Citation Recommended Citation 
Opdahl, Jacob P. (2016) "Concurrent Compaction in JVM Garbage Collection," Scholarly Horizons: 
University of Minnesota, Morris Undergraduate Journal: Vol. 3: Iss. 1, Article 3. 
DOI: https://doi.org/10.61366/2576-2176.1033 
Available at: https://digitalcommons.morris.umn.edu/horizons/vol3/iss1/3 

This Article is brought to you for free and open access by the Journals at University of Minnesota Morris Digital 
Well. It has been accepted for inclusion in Scholarly Horizons: University of Minnesota, Morris Undergraduate 
Journal by an authorized editor of University of Minnesota Morris Digital Well. For more information, please contact 
skulann@morris.umn.edu. 

https://digitalcommons.morris.umn.edu/horizons
https://digitalcommons.morris.umn.edu/horizons
https://digitalcommons.morris.umn.edu/horizons/vol3
https://digitalcommons.morris.umn.edu/horizons/vol3/iss1
https://digitalcommons.morris.umn.edu/horizons/vol3/iss1/3
https://digitalcommons.morris.umn.edu/horizons?utm_source=digitalcommons.morris.umn.edu%2Fhorizons%2Fvol3%2Fiss1%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/149?utm_source=digitalcommons.morris.umn.edu%2Fhorizons%2Fvol3%2Fiss1%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.61366/2576-2176.1033
https://digitalcommons.morris.umn.edu/horizons/vol3/iss1/3?utm_source=digitalcommons.morris.umn.edu%2Fhorizons%2Fvol3%2Fiss1%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:skulann@morris.umn.edu


Concurrent Compaction in JVM Garbage Collection

Jacob P. Opdahl
Division of Science and Mathematics

University of Minnesota, Morris
Morris, Minnesota, USA 56267

opdah023@morris.umn.edu

ABSTRACT
This paper provides a brief overview of both garbage col-
lection (GC) of memory and parallel processing. We then
cover how parallel processing applies to GC. Specifically,
these concepts are focused within the context of the Java
Virtual Machine (JVM). With that foundation, we look at
various algorithms that perform compaction of fragmented
memory during the GC process. These algorithms are de-
signed to run concurrent to the application running. Such
concurrently compacting GC behavior stems from a desire
to reduce “stop-the-world” pauses of an application.

Keywords
Garbage Collection (GC), Concurrency, Compaction, Con-
tinuously Concurrent Compacting Collector (C4), Field Pin-
ning Protocol (FPP), Collie

1. INTRODUCTION
In programming languages, the allocation and dealloca-

tion of memory for objects can be explicit or implicit. If
done implicitly, a language is said to have automatic mem-
ory management. Some languages with automatic memory
management are C#, Java, and Python. Use of automatic
memory management is beneficial to programmers as it re-
moves their need to worry about the details of memory al-
location and deallocation. However, programmers do not
have control over how memory management occurs, which
can have negative impacts on application performance.

Memory for a program is not an unlimited resource. Au-
tomatic memory management must remove unused objects
from memory when appropriate. Dead objects, or garbage,
are objects that can be shown to be unreachable by the pro-
gram [5]. Garbage should be deallocated to save space for
new objects that will be created. The algorithm used to per-
form implicit deallocation of garbage, by detecting and re-
moving dead objects, is a garbage collector. We will focus on
garbage collection (GC) performed within Java Virtual Ma-

This work is licensed under the Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or
send a letter to Creative Commons, 171 Second Street, Suite 300, San Fran-
cisco, California, 94105, USA.
UMM CSci Senior Seminar Conference, December 2015 Morris, MN.

chines (JVMs), software processes that run programs writ-
ten in Java and other languages on computing systems [5].

GC is not without cost. Just like the application, GC re-
quires processing resources to run. When using a single core
of a processor, we get a serial garbage collector operating in
a stop-the-world fashion [5]; GC requires pausing the appli-
cation in order to clean up. Growing storage media is lead-
ing to more memory availability for programs, which means
garbage collectors have more garbage to remove. Thus, stop-
the-world pauses experienced by applications are increasing.

In some environments, application pauses are unaccept-
able; such a scenario is described within the section on real-
time GC in [5]. In order to decrease or remove pauses, we
want to use multiple processors and cores to share the work
of both running an application and its GC. This is known
as parallel processing, and it can be used to enhance perfor-
mance. With demand for faster responding applications cou-
pled with more memory needing managing, it is paramount
that GC be optimized using parallel processing.

In Section 2, we cover background information on GC,
parallel processing, and GC with parallel processing. From
there, we focus our examination of parallel processing in GC.
Section 3 covers the Continuously Concurrent Compacting
Collector (C4), Section 4 considers the Collie collector, and
Section 5 looks at a Field Pinning Protocol (FPP). Discus-
sion of each is focused on how compaction, moving live ob-
jects to adjacent memory locations, in GC can run parallel
to and independent of the application running.

2. BACKGROUND

2.1 Garbage Collection (GC)
Newly allocated objects in JVM languages are stored in

a memory location called the heap [6]; this memory has no
gaps, so it is contiguous. The heap represents the mem-
ory available to a program and is a virtual layer of memory
that corresponds to physical memory. Thus, when GC re-
moves garbage, it cleans up the heap. Applications access
objects stored on the heap through references, fixed-size val-
ues that refer to virtual object locations in the heap [5]. An
application uses a memory structure known as a stack as a
workplace for methods being called, which is separate from
the heap. Only references to objects, not the objects them-
selves, are stored on a stack. Objects can contain references
to other objects, so references can also appear on the heap.

A full performance of an entire GC algorithm is known
as a cycle and is usually started when the heap is full or
nearly full. GC can be broken down into two major steps.

1

Opdahl: Concurrent Compaction in JVM Garbage Collection

Published by University of Minnesota Morris Digital Well, 2016



First, a GC algorithm performs set condemnation when de-
ciding which objects are garbage. The garbage collectors we
examine perform set condemnation using a method known
as tracing. During this, objects are determined to be reach-
able by traversing references from global, root objects. Any
objects reachable by chaining references from these objects
could still be used by the application. Unreachable objects
are garbage. Second, the algorithm performs reclamation by
recovering the memory used by garbage objects.

To optimize GC, a variant can be performed known as
generational GC. Generational collectors rely on most ob-
jects not living long on the heap [10]. Thus, GC efforts are
focused on these objects. Typically, this is achieved by di-
viding the heap into two generations. One generation con-
tains younger objects and is collected more frequently. If
objects in the young generation of the heap survive enough
GC cycles, they will move into the old generation. By not
considering the entire heap with each GC cycle, an applica-
tion experiences shorter disruptions.

As memory is reclaimed by a garbage collector, the heap
is subject to fragmentation [10, 4, 8]. Fragmentation is the
forming of interspersed locations of used space in contiguous
memory. This is an issue as space for new objects being
allocated on the heap becomes difficult to find and manage.

Consider an example with an object that uses 2 megabytes
(Mbs) of memory, such as an array. Suppose that after sev-
eral GC cycles, we have open memory spaces of at most
1 Mb. The JVM experiences additional overhead in allocat-
ing space for this object as it must be stored across non-
contiguous locations. Additionally, more overhead occurs as
accessing the object requires locating all of its parts.

Compaction fights fragmentation of the heap by moving
live objects into a contiguous memory location, and it is
performed as part of GC. Two steps are typically involved
in compaction. After set condemnation, relocation moves
live objects to a contiguous memory location. The contigu-
ous memory location being moved to is often referred to
as to-space. Likewise, an object is moved from from-space.
While called relocation, objects are typically copied rather
than moved. After relocation, a remapping phase updates
all references to moved objects to refer to their new loca-
tions. When compaction is performed, reclamation is often
done by marking from-spaces as freed.

2.2 Parallel Processing
To develop an understanding of parallel processing, we

need to know what processes and threads are [7]. A process is
an instance of a computer program being run. For example,
a JVM and a word processor are two processes. A thread,
at a basic level, is a component of a process; it performs
an independent sequence of instructions from the process it
belongs to. The order of instructions are preserved within a
single thread, but not necessarily among multiple threads.

A process can involve a single thread or multiple threads.
In the JVM, each thread has a personal stack to keep track of
variables and references used within its specific set of tasks.
Parallel processing is the utilization of multiple cores of pro-
cessors to run threads concurrently. If processes are designed
to run with multiple threads, the extra processing power can
make the process more efficient.

Creating multi-threaded processes can result in many new
issues. One of these issues, relevant to GC, is that modifi-
cations to an object can be lost. For example, consider a

process with two threads, A and B. Suppose that thread
A relocates objects in memory with copy operations, and
thread B modifies properties of objects. A modification by
thread B to an object could be lost if thread A relocates the
object, but thread B modifies the object at the old location
due to not knowing it was relocated. While the example is
fairly simple, it can be seen how such a problem applies to
the relocation phase of compaction within GC.

To deal with multiple threads relying on the same data,
synchronization techniques are used. These can prevent is-
sues like data corruption, described above, or even process-
halting exceptions. One such synchronization technique is
a memory barrier (referred to as a read barrier or simply a
barrier), which is an instruction set that must be performed
by a thread before accessing memory [11]. Uses of this in-
clude ensuring threads meet certain requirements before ac-
cessing memory or disallowing a thread to access memory
while another thread is doing so. While barriers can help
prevent conflicts, the checks performed result in extra pro-
cessing overhead for the threads.

2.3 GC with Parallel Processing
We can now return to our original goal of applying parallel

processing to GC. Threads that are part of the application
process are referred to as mutator threads (or mutators)
because they can mutate data [10, 4, 8]. Threads used by
the garbage collector are simply GC threads.

A parallel garbage collector uses multiple threads simul-
taneously to perform GC. [9] All but one of the algorithms
that we examine are parallel. A concurrent garbage collector
executes instructions in parallel to the application running.
In other words, the garbage collector does not entirely stop
the world. A GC algorithm can be only partially concurrent
or parallel. For example, a collector could only have the
tracing phase be parallel while reclamation is concurrent, or
a collector could be both entirely parallel and concurrent.

This paper focuses on concurrent compaction within GC.
We do so due to the importance of avoiding stop-the-world
pauses caused by garbage collectors. Additionally, compact-
ing collectors are vital for efficient application performance.

One important metric for considering how a collector is
affecting an application is latency [5]. Within GC, latency
is a measure of how much a collector negatively impacts ap-
plication processing performance. A higher latency implies
the collector uses more processing resources that the appli-
cation could be using. It can be measured in various ways
but is consistently measured across collectors during a set of
tests. As an example, one way to examine latency is viewing
how server response times are slowed during GC.

3. THE C4 COLLECTOR
The first concurrent compaction algorithm we examine

is implemented in the Continuously Concurrent Compact-
ing Collector (C4), which is a garbage collector included in
JVMs commercially shipped by Azul Systems [10]. The re-
searchers, Iyengar et al., describe C4 as an enhanced, gener-
ational variant of the Pauseless GC algorithm [2]. C4 is gen-
erational in that the entire GC algorithm is independently
utilized in both the young and old generations; in addition,
both generations are concurrent with the application. C4’s
intended environment consists of large servers with multiple
gigabyte heaps.

2

Scholarly Horizons: University of Minnesota, Morris Undergraduate Journal, Vol. 3, Iss. 1 [2016], Art. 3

https://digitalcommons.morris.umn.edu/horizons/vol3/iss1/3
DOI: 10.61366/2576-2176.1033



Figure 1: In C4, memory is relocated page-by-page.
Dead objects are represented with X. From-pages
are protected from mutators by the LVB.

3.1 Loaded Value Barrier
C4 uses a read barrier called the Loaded Value Barrier

(LVB) to synchronize concurrent threads throughout the GC
process [10]. The LVB places invariants, properties to be
maintained, on each reference as it is loaded from memory.
One of the invariants relates to the tracing portion of the GC
algorithm, so it is not discussed here. The other invariant
ensures that references loaded by a mutator during com-
paction point to safely accessible objects: objects that have
already been moved. If the invariant does not hold when a
reference is loaded, the barrier will trigger and correct the
situation as we discuss in the next subsections.

3.2 Concurrent Relocation
The relocation phase of compaction in C4 occurs on a per-

page basis, where a page is a fixed-length, contiguous block
of virtual memory in the heap backed by a contiguous block
of physical storage [10]. In such a model, from-space consists
of from-pages and to-space of to-pages. To quickly empty
pages, the most sparsely populated ones are relocated first,
which also moves objects in physical memory. In Figure 1,
the left-most from-page’s live contents are relocated to a to-
page first as the from-page has only one small object alive.

From-pages are protected by the LVB as can be seen in
Figure 1. LVB will trigger for mutator threads encountering
a reference to an object on a protected page. The mutator’s
subsequent behavior is:

• If the object is relocated already, find its new location

• If the object is being relocated currently, wait until the
GC thread is finished

• If the object has not been relocated, move the object

In all cases, the mutator cannot use the object until it is
on a to-page. Additionally, LVB has mutators correct the
references to avoid further barrier triggers on the same refer-
ence. Without mutator interference, GC threads will simply
relocate the objects but not remap references at this time.

When all live objects are relocated from a from-page, the
C4 compactor will perform quick release. The objects have
already been moved to to-pages, as shown by dashed circles
in Figure 1, so the contents of the from-pages are no longer
needed. Thus, the physical memory backing the page can be
freed. The from-page will be in use as it still has references
to it, but the physical memory can be recycled efficiently. In

Figure 2: C4 GC cycle. Remapping and tracing are
rolled into one traversal. (adapted from [10])

terms of Figure 1, the heap memory on top is used until after
the remapping phase, but the physical memory below can be
paired with a different virtual page and used immediately.

3.3 Concurrent Remapping
To maintain concurrency while updating all references to

the now relocated objects, the C4 compaction algorithm uses
two techniques [10]. The first is lazy remapping. With this,
mutator threads continue updating references as they trigger
the LVB. In order for the remapping phase to end, all live
references must be updated. However, remapping could go
on indefinitely if lazy remapping alone is performed.

To finish remapping, a traversal of live references must be
performed to ensure all are updated; this is like the trac-
ing traversal used to determine which objects are garbage
as discussed in Section 2.1. No physical resources are be-
ing held due to quick release and lazy remapping does not
severely impact mutator operations. As a result, the remap-
ping traversal can wait until another GC cycle starts. C4 will
perform the remapping of one GC cycle during the tracing of
the next cycle since both tasks traverse the same references
in memory. To visualize how this works, examine Figure 2.
Upon remapping completion, all references to from-pages
are now gone. Thus, the virtual addresses are freed and
reclamation of memory is now complete.

3.4 C4 Results Summary
Experiments done with C4 evaluated improvements of us-

ing an algorithm that is simultaneously generational and
concurrent [10]. C4 is tested against a non-generational
C4 algorithm as well as two algorithms that perform non-
concurrent compaction. All garbage collectors were tested
on the same hardware; for specifications, see [10]. The test
exhibited live sets of objects on the heap consistently at a
size of around 2.5 gigabytes (Gbs); the actual heap size was
allowed to grow, indicating greater amounts of garbage on
the heap. The applications were run long enough to ensure
multiple full-heap GC cycles ran and at least one significant
compaction event occurred.

The primary performance metric monitored was worst-
case response times of servers while experiencing the heap
sizes described, which provides a useful indicator of latency.
C4 maintained the smallest worst-case response times across
the largest range of heap sizes. The worst-case response
times were usually in the range of 0.01-0.1 secs; an appli-
cation user would not notice such short pauses. The non-
generational version of C4 could also reach low worst-case
response times, but for a more limited range of heaps sizes.
Standard C4 sustained the times for heap sizes of 5-35 Gbs;

3

Opdahl: Concurrent Compaction in JVM Garbage Collection

Published by University of Minnesota Morris Digital Well, 2016



however, the modified C4 could only do so for heaps sizes of
15-35 Gbs. The non-concurrently compacting collectors had
multi-second worst-case response times for all heap sizes,
which would cause noticeable pauses for a user.

4. THE COLLIE COLLECTOR
We now look at the concurrent compaction technique used

by the single-threaded Collie garbage collector described by
Iynegar et al. [4]. This is the same research group that
worked on C4, so Collie utilizes modified versions of sev-
eral techniques from C4, such as: the tracing algorithm, the
LVB, page-granularity compaction, and quick-release behav-
ior. Only the LVB is modified in significant ways as dis-
cussed below. Like C4, the Collie collector is designed with
server environments and large heaps in mind. However, it
is not commercially available. Collie is implemented and
tested in the same production-quality Azul JVM the Pause-
less GC algorithm is implemented in [2].

4.1 Transactional Memory
The Collie’s compaction algorithm sets itself apart due to

its use of a transactional memory (TM) system as a concur-
rency control alternative to barriers [4]. TM systems allow
sections of code to function analogously to transactions from
database systems, which are a series of operations performed
as one unit where they occur in an all-or-none manner.

For example, consider updating sale prices of items in a
store; this requires ensuring the store price matches the sale
price advertised. When updating the prices for an item,
both the advertised price and the store price should be up-
dated. Only updating the advertised price could lead to irate
customers, and only updating the store price could lead to
customers not knowing about the sale. A transaction en-
sures an item’s prices are unchanged if the update process is
started and then aborted before completion. Additionally,
customers cannot see the prices mid-transaction; they only
see the price from before the transaction began.

TM systems allow a series of operations modifying mem-
ory to be placed in a transactional procedure, much like a
database transaction. The TM system monitors access of
concurrent threads to transactional variables, variables mod-
ified by a transactional procedure. Concurrent threads will
operate in parallel until they try to modify the same transac-
tional variable. How the conflict should resolve can be speci-
fied, but the general behavior would be for one transaction to
be aborted and the other allowed to continue. When a trans-
action is completed, its changes are committed ; any changes
made to memory by the transaction are finalized [12].

Each object on the heap has a referrer set [4]. This is the
precise set of all references pointing to the object. Refer-
rer sets are stored as transactional variables since they are
used by a transactional procedure (simply referred to as a
transaction) that relocates and remaps a single object. An
object must maintain a stable referrer set throughout the
GC process. That is, its referrer set cannot be modified or
expanded, which ensures that all of the object’s references
are correctly remapped.

4.2 The Collie Protocol
After a tracing phase at the start of GC, heap compaction

happens during a transplantation phase [4]; transplantation
is a term meaning the combination of relocation and remap-
ping. Live objects and their referrer sets were determined

Figure 3: Mirrored-to-space and zero-copy trans-
plantation in the Collie collector.

during tracing. As mentioned, the operations for object
transplantation are stored as a transaction. Individual ob-
ject transplantations are done only on objects that main-
tain stable referrer sets throughout the process. An object
is deemed non-individually transplantable (NIT) if its trans-
action is aborted or it fails to maintain a stable referrer set.

Before performing the transactions to move individual ob-
jects, the objects need to be checked for having stable refer-
rer sets. To do this, threads’ stacks are checked for references
to objects. An object with references to it from the stack
of any active mutator thread will be marked NIT since the
object is in use, which could cause referrer set modifications.
This ensures GC does not interfere with mutator work. The
LVB-style read barrier receives its first new purpose here.
When a thread attempts to load a reference, and add it to
its stack, the object the reference points to will be marked
NIT as a mutator is using it.

The copying of an object actually occurs outside the trans-
action since any mutator access of the object will trigger
the LVB-style barrier, rendering the object NIT. Thus, only
remapping by updating the referrer set is done in the trans-
action, which looks like:

1. Transaction is started

2. Object is checked to not have been marked NIT

3. All references are changed to point to the object’s to-
space location

4. Memory transaction is committed

If a transaction fails or is interrupted, as detected by the
TM system, the object is rendered NIT.

4.3 Aborting Compactor
After all individually transplantable objects are trans-

planted, we are left with unmoved NIT objects. [4]. How-
ever, compaction cannot terminate with objects in from-
space. The additions of a mirrored-to-space and zero-copy
transplantation are necessary to terminate compaction with-
out disrupting mutators.

Mirrored-to-space is a virtual memory space correspond-
ing to, and the same size as, from-space. It maps to the same
physical memory as the corresponding from-space, as can
be seen in Figure 3. For compaction termination purposes,
mirrored-to-space is logically considered a part of to-space.

4

Scholarly Horizons: University of Minnesota, Morris Undergraduate Journal, Vol. 3, Iss. 1 [2016], Art. 3

https://digitalcommons.morris.umn.edu/horizons/vol3/iss1/3
DOI: 10.61366/2576-2176.1033



Zero-copy transplantation gets the compactor to believe
it has finished a cycle. Mirrored-to-space holds the same ob-
jects in physical memory as from-space. Thus, if references
are remapped to mirrored-to-space from from-space, the ob-
jects appear to be relocated without physically moving. This
technique is zero-copy transplantation. In Figure 3, all ref-
erences are to from-space for NIT objects. After zero-copy
transplantation, they point to mirrored-to-space.

Zero-copy transplantation is performed on all NIT objects.
The LVB-style barrier receives a second purpose here. As
mutators access references to NIT objects before they are
updated to mirrored-to-space, the barrier will cause the mu-
tators to correct the references before using the object. Also
like C4, entirely finishing zero-copy transplantation, which is
just remapping, is rolled up into the next GC cycle’s tracing
phase. In the end, NIT objects are not actually compacted;
for this reason, Collie is said to have an aborting compactor.
It will cease moving objects to allow mutator threads to
continue working uninterrupted.

4.4 Collie Results Summary
The main goal of the Collie collector is to decrease latency

during compaction [4]. Collie was tested against a modified
variant of the Pauseless GC algorithm [2]. Accordingly, both
collectors were implemented within the same JVM. For ex-
act testing specifications, refer to [4]. Collie utilizes several
aspects of C4, which in turn builds upon the Pauseless col-
lector. This provides an effective comparison to see how use
of transactional memory and an aborting compactor affect
application performance.

To examine latency, minimum mutator utilization (MMU)
is measured. MMU is the minimum percentage of mutators
being utilized over a period of time. Ideally, MMU would al-
ways be at 100% so all mutators are being used. MMUs were
taken from various time periods during which compaction
was running and was compared between the two algorithms.
Comparisons were done with a 128 megabyte (Mb) heap and
a 512 Mb heap. For all time windows, the Collie compactor
had higher MMUs than Pauseless. Collie did not go below
a 70% mutator utilization level whereas Pauseless averaged
between 40% and 70%. This shows that the aborting na-
ture of Collie lends itself to ensuring mutator response time,
and thus decreasing latency, despite potentially limiting the
amount of memory compacted.

5. FIELD PINNING PROTOCOL
Last, we examine concurrent compaction in GC through

a Field Pinning Protocol (FPP), designed by Österlund and
Löwe [8]. FPP describes a barrier-free process for perform-
ing the relocation aspect of concurrent compaction. The
remapping phase and other portions of GC are left up to
the host garbage collector. FPP is compliant with the Java
Native Interface to allow for integration into a JVM. For pur-
poses of testing, FPP is implemented within the Garbage-
First GC algorithm in the HotSpot JVM of OpenJDK 9 [3],
which lacks concurrent relocation.

5.1 Hazard Pointers
The key component driving FPP is the hazard pointer

(HP) [8]. In FPP, all mutator threads contain a list of HPs.
The HPs point to objects in memory a thread is accessing, or
pin them. When a thread finishes using an object, it drops
the HP. So long as an object is pinned by a mutator, it can-

not be relocated as it is still in use. Once all threads have
unpinned the object, it can safely be relocated. When dis-
cussing the theoretical construction of the algorithm, a gran-
ularity of pinning individual fields is used, thus the name
Field Pinning Protocol.

While it is explained in more detail below, an example of
how HPs work on a high-level is useful. Imagine a pot of
coffee at work. Anyone wanting coffee must make it known
to others by having a cup, otherwise the coffee is liable to
be moved to another break room. The people are effectively
pinning the coffee. Once everyone has had their share of
caffeine, it should be moved. This can be done safely when
no one has cups any longer, so the coffee is not pinned.

5.2 Collaborative Copying and Blame
HPs prevent premature relocation of objects by serving as

a distributed counter. Threads cannot relocate objects with
a non-zero HP count. A mutator thread impedes a copying
thread if its HP prevents the copying. The impeding thread
is blamed for the interruption [8]; it becomes responsible for
ensuring the object is relocated. GC threads cannot receive
blame as they will not impede copy attempts.

The process followed by mutator threads during the relo-
cation phase when accessing an object is as follows:

1. Pin the object by adding a HP

2. Determine whether the object has already been copied

3. Mutate/use the object. Since the object is pinned, the
thread can do so without worry

4. Unpin the object when no longer needed

5. If the thread was blamed due to impeding another
thread’s copy attempt, attempt to copy the object:

(a) Check other threads for HPs before copying. If
HPs found, blame all the threads and move along

(b) Proceed to copy the object with new pins to the
object impeding the copy attempt

Mutators will continually bounce blame around until no
threads have the object pinned. At this time, the last thread
to attempt to copy the object will succeed.

Reconsider the coffee example. Suppose someone is in
charge of moving the coffee to the other room, much like
how a GC thread must relocate objects. They can try, but
others could still have cups and want more coffee. The inter-
rupted person has other tasks they could be doing, so they
tell everyone with a cup to move the coffee when finished
drinking it; they blame the others for not finishing the task
and make them responsible for it. When those blamed finish
their coffee, they will try to move it as well. If interrupted
by others with coffee cups, HPs, they pass the blame along.
This continues until a last person finishes their coffee and
moves it to another room.

At the start of FPP relocation, GC threads will attempt
to copy live objects. At this time, blaming is disabled. Af-
ter a first round of attempting to copy objects, GC threads
will again try to copy the remaining objects. Any mutator
threads impeding copy attempts at this time will be blamed.
Blame continues to be passed until the objects are relocated.

It is possible for an object not to move because of be-
ing continually pinned. How this terminates depends on

5

Opdahl: Concurrent Compaction in JVM Garbage Collection

Published by University of Minnesota Morris Digital Well, 2016



the host GC algorithm used. When using the Garbage-First
(G1) algorithm, this process goes until all objects are moved
or another GC cycle starts. If objects have not relocated
when another cycle begins, they are automatically marked
for relocation again. Allowing mutators to continue passing
blame works in G1 because, like C4 and Collie, the algo-
rithm will roll up remapping into the next GC cycle’s trac-
ing phase. Possible alternative approaches include setting a
max number of impediments or setting a timer; after such a
threshold is reached, the mutator threads pinning the object
will be stopped and the object will be relocated.

5.3 FPP Results Summary
As mentioned, FPP was implemented in the G1 garbage

collector for testing purposes [8]. Appropriately, the mod-
ified G1 collector that uses FPP for relocation is tested
against the unmodified G1 collector. Tests were run in a
MacBook Pro; for the hardware details, see [8]. We focus on
the tests comparing latency of the two garbage collectors.
For other tests performed and their results, see [8].

For examining latency, the h2 benchmark from DaCapo
is used [1]. The benchmark was chosen due to being mem-
ory intensive, which makes latency issues apparent. Latency
is measured using the jHiccup tool developed by Azul Sys-
tems. Compared to its host garbage collector, G1 with FPP
improved latency for all time intervals examined. On aver-
age, latency was improved by around 50%; application pause
times were about half as long. Latency was shown to mostly
come from host garbage collector activities such as tracing
and remapping rather than delay from dealing with pins.

6. CONCLUSIONS
We have examined three techniques for concurrent com-

paction that all effectively reduce latency of GC. The full GC
algorithms were tested for latency in distinct environments,
with different benchmarks, and against various algorithms,
so it is difficult to compare them to one another. Addi-
tionally, direct comparisons are especially difficult since the
algorithms were not all designed for the same environment.

The algorithms we have looked at achieved concurrency
while maintaining low latency in various ways. C4 and Col-
lie use read barriers differently. C4 uses a barrier to control
mutator behavior, and Collie uses one to allow mutators
to work without interruption. FPP takes a largely differ-
ent approach by focusing on performing solely relocation
without barriers; it avoids standard synchronization meth-
ods by using HPs and thread collaboration instead. Overall,
the transition from barrier to mostly barrier-free concurrent
compaction shows advancements in the field. Regardless of
approach, concurrent compaction is necessary for efficient
GC with growing heaps and increasing environmental de-
mands. Ultimately, the approach for compaction used will
depend on its intended environment.

Acknowledgments
Thank you Elena Machkasova, Jeff Lindblom, and Jeremy
Eberhardt for the great advice and feedback.

7. REFERENCES
[1] S. M. Blackburn, R. Garner, C. Hoffmann, A. M.

Khang, K. S. McKinley, R. Bentzur, A. Diwan,
D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,

A. Hosking, M. Jump, H. Lee, J. E. B. Moss,
A. Phansalkar, D. Stefanović, T. VanDrunen, D. von
Dincklage, and B. Wiedermann. The DaCapo
benchmarks: Java benchmarking development and
analysis. In Proceedings of the 21st Annual ACM
SIGPLAN Conference on Object-oriented
Programming Systems, Languages, and Applications,
OOPSLA ’06, pages 169–190, New York, NY, USA,
2006. ACM.

[2] C. Click, G. Tene, and M. Wolf. The Pauseless GC
algorithm. In Proceedings of the 1st ACM/USENIX
International Conference on Virtual Execution
Environments, VEE ’05, pages 46–56, New York, NY,
USA, 2005. ACM.

[3] D. Detlefs, C. Flood, S. Heller, and T. Printezis.
Garbage-First garbage collection. In Proceedings of the
4th International Symposium on Memory
Management, ISMM ’04, pages 37–48, New York, NY,
USA, 2004. ACM.

[4] B. Iyengar, G. Tene, M. Wolf, and E. Gehringer. The
Collie: A wait-free compacting collector. In
Proceedings of the 2012 International Symposium on
Memory Management, ISMM ’12, pages 85–96, New
York, NY, USA, 2012. ACM.

[5] J. Lindblom. Modern considerations of garbage
collection in the Java HotSpot Virtual Machine. In
UMM CSci Senior Seminar Conference, VEE ’05,
Morris, MN, USA, 2011. UMM.

[6] Oracle. Understanding memory management, 2014.
docs.oracle.com/cd/E13150_01/jrockit_jvm/

jrockit/geninfo/diagnos/garbage_collect.html,
[Online; accessed 24-October-2015].

[7] Oracle. Processes and threads, 2015.
docs.oracle.com/javase/tutorial/essential/

concurrency/procthread.html, [Online; accessed
24-October-2015].

[8] E. Österlund and W. Löwe. Concurrent compaction
using a Field Pinning Protocol. In Proceedings of the
2015 ACM SIGPLAN International Symposium on
Memory Management, ISMM 2015, pages 56–69, New
York, NY, USA, 2015. ACM.

[9] W. Puffitsch. Hard real-time garbage collection for a
Java chip multi-processor. In Proceedings of the 9th
International Workshop on Java Technologies for
Real-Time and Embedded Systems, JTRES ’11, pages
64–73, New York, NY, USA, 2011. ACM.

[10] G. Tene, B. Iyengar, and M. Wolf. C4: The
Continuously Concurrent Compacting Collector. In
Proceedings of the International Symposium on
Memory Management, ISMM ’11, pages 79–88, New
York, NY, USA, 2011. ACM.

[11] Wikipedia. Memory barrier — Wikipedia, The Free
Encyclopedia, 2015. en.wikipedia.org/w/index.php?
title=Memory_barrier&oldid=663234890, [Online;
accessed 24-October-2015].

[12] Wikipedia. Transactional memory — Wikipedia, The
Free Encyclopedia, 2015. en.wikipedia.org/w/index.
php?title=Transactional_memory&oldid=680734631,
[Online; accessed 3-October-2015].

6

Scholarly Horizons: University of Minnesota, Morris Undergraduate Journal, Vol. 3, Iss. 1 [2016], Art. 3

https://digitalcommons.morris.umn.edu/horizons/vol3/iss1/3
DOI: 10.61366/2576-2176.1033


	Concurrent Compaction in JVM Garbage Collection
	Recommended Citation

	tmp.1455304361.pdf.NAl9U

